Five Novel Non-Sialic Acid-Like Scaffolds Inhibit In Vitro H1N1 and H5N2 Neuraminidase Activity of Influenza a Virus

被引:9
作者
Marquez-Dominguez, Luis [1 ,2 ,3 ]
Reyes-Leyva, Julio [1 ]
Herrera-Camacho, Irma [4 ]
Santos-Lopez, Gerardo [1 ]
Scior, Thomas [3 ]
机构
[1] Inst Mexicano Seguro Social, Ctr Invest Biomed Oriente, Lab Virol, Puebla 74630, Mexico
[2] Benemerita Univ Autonoma Puebla, Posgrad Ciencias Quim, Puebla 72570, Mexico
[3] Benemerita Univ Autonoma Puebla, Lab Simulac Computac Mol, Fac Ciencias Quim, Puebla 72592, Mexico
[4] Benemerita Univ Autonoma Puebla, Inst Ciencias, Ctr Quim, Puebla 72570, Mexico
关键词
influenza; flu drugs; neuraminidase inhibitors; noncompetitive inhibition; scaffold hopping; ligand docking; STRUCTURE-BASED DESIGN; REDUCED SUSCEPTIBILITY; ASCORBIC-ACID; ZANAMIVIR; OSELTAMIVIR; RESISTANT; ANALOGS; BINDING; DERIVATIVES; SITE;
D O I
10.3390/molecules25184248
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Neuraminidase (NA) of influenza viruses enables the virus to access the cell membrane. It degrades the sialic acid contained in extracellular mucin. Later, it is responsible for releasing newly formed virions from the membrane of infected cells. Both processes become key functions within the viral cycle. Therefore, it is a therapeutic target for research of the new antiviral agents. Structure-activity relationships studies have revealed which are the important functional groups for the receptor-ligand interaction. Influenza virus type A NA activity was inhibited by five scaffolds without structural resemblance to sialic acid. Intending small organic compound repositioning along with drug repurposing, this study combined in silico simulations of ligand docking into the known binding site of NA, along with in vitro bioassays. The five proposed scaffolds areN-acetylphenylalanylmethionine, propanoic 3-[(2,5-dimethylphenyl) carbamoyl]-2-(piperazin-1-yl) acid, 3-(propylaminosulfonyl)-4-chlorobenzoic acid, ascorbic acid (vitamin C), and 4-(dipropylsulfamoyl) benzoic acid (probenecid). Their half maximal inhibitory concentration (IC50) was determined through fluorometry. An acidic reagent 2 '-O-(4-methylumbelliferyl)-alpha-dN-acetylneuraminic acid (MUNANA) was used as substrate for viruses of human influenza H1N1 or avian influenza H5N2. Inhibition was observed in millimolar ranges in a concentration-dependent manner. The IC(50)values of the five proposed scaffolds ranged from 6.4 to 73 mM. The values reflect a significant affinity difference with respect to the reference drug zanamivir (p< 0.001). Two compounds (N-acetyl dipeptide and 4-substituted benzoic acid) clearly showed competitive mechanisms, whereas ascorbic acid reflected non-competitive kinetics. The five small organic molecules constitute five different scaffolds with moderate NA affinities. They are proposed as lead compounds for developing new NA inhibitors which are not analogous to sialic acid.
引用
收藏
页数:21
相关论文
共 79 条
[1]   Exploring the chemical space of influenza neuraminidase inhibitors [J].
Anuwongcharoen, Nuttapat ;
Shoombuatong, Watshara ;
Tantimongcolwat, Tanawut ;
Prachayasittikul, Virapong ;
Nantasenamat, Chanin .
PEERJ, 2016, 4
[2]   Viral Concentration Determination Through Plaque Assays: Using Traditional and Novel Overlay Systems [J].
Baer, Alan ;
Kehn-Hall, Kylene .
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2014, (93)
[3]   Zanamivir susceptibility monitoring and characterization of influenza virus clinical isolates obtained during phase II clinical efficacy studies [J].
Barnett, JM ;
Cadman, A ;
Gor, D ;
Dempsey, M ;
Walters, M ;
Candlin, A ;
Tisdale, M ;
Morley, PJ ;
Owens, IJ ;
Fenton, RJ ;
Lewis, AP ;
Claas, ECJ ;
Rimmelzwaan, GF ;
De Groot, R ;
Osterhaus, ADME .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2000, 44 (01) :78-87
[4]   Pharmacophore-Based Virtual Screening for Identification of Novel Neuraminidase Inhibitors and Verification of Inhibitory Activity by Molecular Docking [J].
Batool, Sidra ;
Mushtaq, Gohar ;
Kamal, Warda ;
Kamal, Mohammad A. .
MEDICINAL CHEMISTRY, 2016, 12 (01) :63-73
[5]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[6]   The biology of influenza viruses [J].
Bouvier, Nicole M. ;
Palese, Peter .
VACCINE, 2008, 26 :D49-D53
[7]   Radical-regulating and antiviral properties of ascorbic acid and its derivatives [J].
Brinkevich, Sviatoslav D. ;
Boreko, Eugene I. ;
Savinova, Olga V. ;
Pavlova, Natalia I. ;
Shadyro, Oleg I. .
BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2012, 22 (07) :2424-2427
[8]   NCBI Viral Genomes Resource [J].
Brister, J. Rodney ;
Ako-adjei, Danso ;
Bao, Yiming ;
Blinkova, Olga .
NUCLEIC ACIDS RESEARCH, 2015, 43 (D1) :D571-D577
[9]  
Carter J., 2007, VIROLOGY PRINCIPLES, V2nd
[10]   Screening for Neuraminidase Inhibitor Resistance Markers among Avian Influenza Viruses of the N4, N5, N6, and N8 Neuraminidase Subtypes [J].
Choi, Won-Suk ;
Jeong, Ju Hwan ;
Kwon, Jin Jung ;
Ahn, Su Jeong ;
Lloren, Khristine Kaith S. ;
Kwon, Hyeok-Il ;
Chae, Hee Bok ;
Hwang, Jungwon ;
Kim, Myung Hee ;
Kim, Chul-Joong ;
Webby, Richard J. ;
Govorkova, Elena A. ;
Choi, Young Ki ;
Baek, Yun Hee ;
Song, Min-Suk .
JOURNAL OF VIROLOGY, 2018, 92 (01)