Study of a nonlinear Kirchhoff equation with non-homogeneous material

被引:58
作者
Figueiredo, Giovany M. [1 ]
Morales-Rodrigo, Cristian [2 ]
Santos Junior, Joao R. [1 ]
Suarez, Antonio [2 ]
机构
[1] Fed Univ Para, Fac Matemat, BR-66075110 Belem, Para, Brazil
[2] Univ Seville, Fac Matemat, Dpto Ecuaciones Diferenciales & Anal Numer, Seville 41012, Spain
关键词
Kirchhoff equation; Non-homogeneous material; Bifurcation methods; SIGN-CHANGING SOLUTIONS; BOUNDARY-VALUE-PROBLEMS; POSITIVE SOLUTIONS; R-N; MULTIPLE SOLUTIONS; CRITICAL GROWTH; ELLIPTIC EQUATION; EXISTENCE; BEHAVIOR;
D O I
10.1016/j.jmaa.2014.02.067
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study a non-homogeneous elliptic Kirchhoff equation with nonlinear reaction term. We analyze the existence and uniqueness of positive solution. The main novelty is the inclusion of non-homogeneous term making the problem without a variational structure. We use mainly bifurcation arguments to get the results. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:597 / 608
页数:12
相关论文
共 29 条
[1]   Nonlinear perturbations of a periodic Kirchhoff equation in RN [J].
Alves, Claudianor O. ;
Figueiredo, Giovany M. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (05) :2750-2759
[2]   Positive solutions for a quasilinear elliptic equation of Kirchhoff type [J].
Alves, CO ;
Corrêa, FJSA ;
Ma, TF .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (01) :85-93
[3]   POSITIVE SOLUTIONS OF ASYMPTOTICALLY LINEAR ELLIPTIC EIGENVALUE PROBLEMS [J].
AMBROSETTI, A ;
HESS, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1980, 73 (02) :411-422
[4]  
[Anonymous], 1983, ELLIPTIC PARTIAL DIF
[5]  
Azzollini A, 2012, DIFFER INTEGRAL EQU, V25, P543
[6]   On a Schrodinger-Kirchhoff-type equation involving the p(x)-Laplacian [J].
Cammaroto, F. ;
Vilasi, L. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 81 :42-53
[7]   Multiple solutions for p-Kirchhoff equations in RN [J].
Chen, Caisheng ;
Song, Hongxue ;
Xiu, Zhonghu .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 86 :146-156
[8]   Multiple solutions for a class of Kirchhoff type problems with concave nonlinearity [J].
Cheng, Bitao ;
Wu, Xian ;
Liu, Jun .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2012, 19 (05) :521-537
[9]   Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument [J].
Figueiredo, Giovany M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 401 (02) :706-713
[10]   Existence and concentration behavior of positive solutions for a Kirchhoff equation in R3 [J].
He, Xiaoming ;
Zou, Wenming .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (02) :1813-1834