Electrokinetic detection for X-ray spectra of weakly interacting liquids: n-decane and n-nonane

被引:7
|
作者
Lam, Royce K. [1 ,2 ]
Shih, Orion [1 ]
Smith, Jacob W. [1 ,2 ]
Sheardy, Alex T. [1 ,2 ]
Rizzuto, Anthony M. [1 ,2 ]
Prendergast, David [3 ]
Saykally, Richard J. [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Chem Sci Div, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2014年 / 140卷 / 23期
关键词
AA FORCE-FIELD; HYDROGEN-BOND NETWORK; ELECTRONIC-STRUCTURE; AQUEOUS-SOLUTIONS; WATER MICROJETS; ABSORPTION SPECTROSCOPY; MOLECULAR SIMULATION; PHASE; HYDROCARBONS; GENERATION;
D O I
10.1063/1.4882901
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The introduction of liquid microjets into soft X-ray absorption spectroscopy enabled the windowless study of liquids by this powerful atom-selective high vacuum methodology. However, weakly interacting liquids produce large vapor backgrounds that strongly perturb the liquid signal. Consequently, solvents (e. g., hydrocarbons, ethers, ketones, etc.) and solutions of central importance in chemistry and biology have been inaccessible by this technology. Here we describe a new detection method, upstream detection, which greatly reduces the vapor phase contribution to the X-ray absorption signal while retaining important advantages of liquid microjet sample introduction (e. g., minimal radiation damage). The effectiveness of the upstream detection method is demonstrated in this first study of room temperature liquid hydrocarbons: n-nonane and n-decane. Good agreement with first principles' calculations indicates that the eXcited electron and Core Hole theory adequately describes the subtle interactions in these liquids that perturb the electronic structure of the unoccupied states probed in core-level experiments. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Electrokinetic detection for x-ray spectra of weakly interacting liquids: n-decane and n-nonane (vol 140, 234202, 2014)
    Lam, Royce K.
    Shih, Orion
    Smith, JacobW.
    Sheardy, Alex T.
    Rizzuto, Anthony M.
    Prendergast, David
    Saykally, Richard J.
    JOURNAL OF CHEMICAL PHYSICS, 2017, 146 (24):
  • [2] The viscosity and density of the methanol + n-nonane, ethanol + n-nonane, and ethanol + n-decane systems
    E. D. Totchasov
    M. Yu. Nikiforov
    O. V. Eliseeva
    G. A. Al’per
    Russian Journal of Physical Chemistry, 2006, 80 : 1676 - 1679
  • [3] The viscosity and density of the methanol plus n-nonane, ethanol plus n-nonane, and ethanol plus n-decane systems
    Totchasov, E. D.
    Nikiforov, M. Yu.
    Eliseeva, O. V.
    Al'per, G. A.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY, 2006, 80 (10): : 1676 - 1679
  • [4] DEHYDROCYCLIZATION OF N-NONANE AND N-DECANE UNDER CONDITIONS OF CATALYTIC GASOLINE REFORMING
    SZEBENYI, I
    ACKERMANN, L
    SZECHY, G
    GOBOLOS, S
    ACTA CHIMICA ACADEMIAE SCIENTARIUM HUNGARICAE, 1976, 90 (03): : 313 - 324
  • [5] THERMO-PHYSICAL PARAMETERS OF N-NONANE AND N-DECANE UP TO 1 GPA
    KUYUMCHEV, AA
    SHULGA, VM
    ATANOV, YA
    HIGH TEMPERATURE, 1988, 26 (04) : 555 - 560
  • [6] Isothermal vapour-liquid equilibrium data for the binary systems of CHF3 with (n-nonane, n-decane, or n-undecane) and C2F6 with (n-nonane or n-decane)
    Williams-Wynn, Mark D.
    Naidoo, Paramespri
    Ramjugernath, Deresh
    FLUID PHASE EQUILIBRIA, 2018, 464 : 64 - 78
  • [7] Thermodynamic and Modeling Study of n-Octane, n-Nonane, and n-Decane Films on MgO(100)
    Strange, Nicholas
    Fernandez-Canoto, David
    Larese, J. Z.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (33): : 18631 - 18641
  • [8] Viscosity correlations for minor constituent fluids in natural gas:: n-octane, n-nonane and n-decane
    Huber, ML
    Laesecke, A
    Xiang, HW
    FLUID PHASE EQUILIBRIA, 2004, 224 (02) : 263 - 270
  • [9] Viscosity correlations for minor constituent fluids in natural gas:: n-octane, n-nonane and n-decane
    Huber, ML
    Laesecke, A
    Xiang, HW
    FLUID PHASE EQUILIBRIA, 2005, 228 : 401 - 408
  • [10] Thermal conductivity correlations for minor constituent fluids in natural gas:: n-octane, n-nonane and n-decane
    Huber, ML
    Perkins, RA
    FLUID PHASE EQUILIBRIA, 2005, 227 (01) : 47 - 55