CommPath: An R package for inference and analysis of pathway- mediated cell-cell communication chain from single-cell transcriptomics

被引:8
作者
Lu, Hao [1 ]
Ping, Jie [1 ]
Zhou, Guangming [1 ]
Zhao, Zhen [1 ]
Gao, Weiming [2 ]
Jiang, Yuqing [1 ,3 ]
Quan, Cheng [1 ]
Lu, Yiming [1 ,2 ]
Zhou, Gangqiao [1 ,2 ,3 ]
机构
[1] Beijing Inst Radiat Med, Beijing 100850, Peoples R China
[2] Hebei Univ, Baoding 071002, Hebei, Peoples R China
[3] Nanjing Med Univ, Nanjing 211166, Jiangsu, Peoples R China
来源
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL | 2022年 / 20卷
关键词
Cell-cell communication; Ligand-receptor interaction; scRNA-seq; R; Webserver; HEPATOCELLULAR-CARCINOMA; BIOMARKERS;
D O I
10.1016/j.csbj.2022.10.028
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell transcriptomics offers opportunities to investigate ligand-receptor (LR) interactions between heterogeneous cell populations within tissues. However, most existing tools for the inference of intercel-lular communication do not allow prioritization of functional LR associations that provoke certain biolog-ical responses in the receiver cells. In addition, current tools do not enable the identification of the impact on the downstream cell types of the receiver cells. We present CommPath, an open-source R package and webserver, to analyze and visualize the LR interactions and pathway-mediated intercellular communica-tion chain with single-cell transcriptomic data. CommPath curates a comprehensive signaling pathway database to interpret the consequences of LR associations and therefore infers functional LR interactions. Furthermore, CommPath determines cell-cell communication chain by considering both the upstream and downstream cells of user-defined cell populations. Applying CommPath to human hepatocellular car-cinoma dataset shows its ability to decipher complex LR interaction patterns and the associated intercel-lular communication chain, as well as their changes in disease versus homeostasis. (c) 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-commons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:5978 / 5983
页数:6
相关论文
共 26 条
  • [1] Gene Ontology: tool for the unification of biology
    Ashburner, M
    Ball, CA
    Blake, JA
    Botstein, D
    Butler, H
    Cherry, JM
    Davis, AP
    Dolinski, K
    Dwight, SS
    Eppig, JT
    Harris, MA
    Hill, DP
    Issel-Tarver, L
    Kasarskis, A
    Lewis, S
    Matese, JC
    Richardson, JE
    Ringwald, M
    Rubin, GM
    Sherlock, G
    [J]. NATURE GENETICS, 2000, 25 (01) : 25 - 29
  • [2] Identify, quantify and characterize cellular communication from single-cell RNA sequencing data with scSeqComm
    Baruzzo, Giacomo
    Cesaro, Giulia
    Di Camillo, Barbara
    [J]. BIOINFORMATICS, 2022, 38 (07) : 1920 - 1929
  • [3] NicheNet: modeling intercellular communication by linking ligands to target genes
    Browaeys, Robin
    Saelens, Wouter
    Saeys, Yvan
    [J]. NATURE METHODS, 2020, 17 (02) : 159 - +
  • [4] SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics
    Cabello-Aguilar, Simon
    Alame, Melissa
    Kon-Sun-Tack, Fabien
    Fau, Caroline
    Lacroix, Matthieu
    Colinge, Jacques
    [J]. NUCLEIC ACIDS RESEARCH, 2020, 48 (10)
  • [5] Croft D, 2014, NUCLEIC ACIDS RES, V42, pD472, DOI [10.1093/nar/gkt1102, 10.1093/nar/gkz1031]
  • [6] CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes
    Efremova, Mirjana
    Vento-Tormo, Miquel
    Teichmann, Sarah A.
    Vento-Tormo, Roser
    [J]. NATURE PROTOCOLS, 2020, 15 (04) : 1484 - 1506
  • [7] Ghanem I, 2014, AM J TRANSL RES, V6, P340
  • [8] Predicting cell-to-cell communication networks using NATMI
    Hou, Rui
    Denisenko, Elena
    Ong, Huan Ting
    Ramilowski, Jordan A.
    Forrest, Alistair R. R.
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [9] scConnect: a method for exploratory analysis of cell-cell communication based on single-cell RNA-sequencing data
    Jakobsson, Jon E. T.
    Spjuth, Ola
    Lagerstrom, Malin C.
    [J]. BIOINFORMATICS, 2021, 37 (20) : 3501 - 3508
  • [10] Inference and analysis of cell-cell communication using CellChat
    Jin, Suoqin
    Guerrero-Juarez, Christian F.
    Zhang, Lihua
    Chang, Ivan
    Ramos, Raul
    Kuan, Chen-Hsiang
    Myung, Peggy
    Plikus, Maksim V.
    Nie, Qing
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)