A holding cost bound for the economic lot-sizing problem with time-invariant cost parameters

被引:3
作者
van den Heuvel, Wilco [1 ]
Wagelmans, Albert P. M.
机构
[1] Erasmus Univ, Inst Econometr, NL-3000 DR Rotterdam, Netherlands
关键词
Lot-sizing; Holding cost bound; Heuristics; PERFORMANCE; HEURISTICS; ALGORITHM; MODEL; N);
D O I
10.1016/j.orl.2008.12.006
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We show that in an optimal solution of the economic lot-sizing problem the total holding cost in an order interval is bounded from above by a quantity proportional to the setup cost and the logarithm of the number of periods in the interval. We present two applications of this result. (c) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:102 / 106
页数:5
相关论文
共 13 条
[1]   IMPROVED ALGORITHMS FOR ECONOMIC LOT-SIZE PROBLEMS [J].
AGGARWAL, A ;
PARK, JK .
OPERATIONS RESEARCH, 1993, 41 (03) :549-571
[2]   WORST CASE PERFORMANCE FOR LOT SIZING HEURISTICS [J].
AXSATER, S .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1982, 9 (04) :339-343
[3]   PERFORMANCE BOUNDS FOR LOT SIZING HEURISTICS [J].
AXSATER, S .
MANAGEMENT SCIENCE, 1985, 31 (05) :634-640
[4]  
Baker K. R., 1989, Journal of Manufacturing and Operations Management, V2, P199
[5]   APPROXIMATION METHODS FOR THE UNCAPACITATED DYNAMIC LOT SIZE PROBLEM [J].
BITRAN, GR ;
MAGNANTI, TL ;
YANASSE, HH .
MANAGEMENT SCIENCE, 1984, 30 (09) :1121-1140
[6]   A SIMPLE FORWARD ALGORITHM TO SOLVE GENERAL DYNAMIC LOT SIZING MODELS WITH N PERIODS IN 0(N LOG N) OR 0(N) TIME [J].
FEDERGRUEN, A ;
TZUR, M .
MANAGEMENT SCIENCE, 1991, 37 (08) :909-925
[7]  
Graham RL., 1994, Concrete Mathematics: A Foundation for Computer Science, V2
[8]  
Silver E.A., 1998, INVENTORY MANAGEMENT
[9]  
Van Hoesel CPM, 2000, INT J PROD ECON, V66, P13, DOI 10.1016/S0925-5273(99)00109-7
[10]  
VANDENHEUVEL W, 2009, OPERATIONS IN PRESS