XFEM modeling for curved fracture in the anisotropic fracture toughness medium

被引:20
作者
Gao, Yue [1 ,2 ]
Liu, Zhanli [1 ,2 ]
Wang, Tao [1 ,2 ]
Zeng, Qinglei [1 ,2 ]
Li, Xiang [1 ,2 ]
Zhuang, Zhuo [1 ,2 ]
机构
[1] Tsinghua Univ, AML, Dept Engn Mech, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Ctr Mech & Mat, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Anisotropic material; Anisotropic fracture toughness; Energy release rate; Extended finite element method (XFEM); Crack growth; CRACK;
D O I
10.1007/s00466-018-1627-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The materials with anisotropic fracture toughness are familiar in nature, e.g., anisotropic rocks, woods, and crystals. The deflecting crack propagation behaviors are often observed in these materials due to the anisotropic fracture toughness property. In this paper, the extended finite element method (XFEM) is developed for modeling the crack extending behavior in anisotropic fracture toughness medium. First, anisotropic fracture toughness profiles are introduced and embedded into XFEM, and the crack deflecting direction is predicted based on maximum energy release rate criterion. To capture the details of the twisting crack path as accurate as possible in XFEM, a mesh independent piecewise linear crack model is developed numerically. Then several numerical examples in studying the curved crack path in a material with the anisotropic fracture toughness property are given. With the techniques of XFEM embedded with anisotropic fracture toughness, the crack path in such anisotropic materials could be predicted and designed.
引用
收藏
页码:869 / 883
页数:15
相关论文
共 40 条
  • [1] CRACK PATHS IN PLANE SITUATIONS .2. DETAILED FORM OF THE EXPANSION OF THE STRESS INTENSITY FACTORS
    AMESTOY, M
    LEBLOND, JB
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1992, 29 (04) : 465 - 501
  • [2] Effect of crystal orientation on fracture strength and fracture toughness of single crystal silicon
    Ando, T
    Li, XP
    Nakao, S
    Kasai, T
    Shikida, M
    Sato, K
    [J]. MEMS 2004: 17TH IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS, TECHNICAL DIGEST, 2004, : 177 - 180
  • [3] Developing new enrichment functions for crack simulation in orthotropic media by the extended finite element method
    Asadpoure, A.
    Mohammadi, S.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2007, 69 (10) : 2150 - 2172
  • [4] Microcantilever bending experiments in NiAl - Evaluation, size effects, and crack tip plasticity
    Ast, Johannes
    Przybilla, Thomas
    Maier, Verena
    Durst, Karsten
    Goeken, Mathias
    [J]. JOURNAL OF MATERIALS RESEARCH, 2014, 29 (18) : 2129 - 2140
  • [5] ALGORITHM FOR COMPUTER CONTROL OF A DIGITAL PLOTTER
    BRESENHAM, JE
    [J]. IBM SYSTEMS JOURNAL, 1965, 4 (01) : 25 - 30
  • [6] When and how do cracks propagate?
    Chambolle, A.
    Francfort, G. A.
    Marigo, J. -J.
    [J]. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2009, 57 (09) : 1614 - 1622
  • [7] Fracture toughness anisotropy in shale
    Chandler, Michael R.
    Meredith, Philip G.
    Brantut, Nicolas
    Crawford, Brian R.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2016, 121 (03) : 1706 - 1729
  • [8] SLIGHTLY CURVED OR KINKED CRACKS IN ANISOTROPIC ELASTIC SOLIDS
    GAO, HJ
    CHIU, CH
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1992, 29 (08) : 947 - 972
  • [9] Crack forbidden area in the anisotropic fracture toughness medium
    Gao, Yue
    Liu, Zhanli
    Wang, Tao
    Zeng, Qinglei
    Li, Xiang
    Zhuang, Zhuo
    [J]. EXTREME MECHANICS LETTERS, 2018, 22 : 172 - 175
  • [10] Theoretical and numerical prediction of crack path in the material with anisotropic fracture toughness
    Gao, Yue
    Liu, Zhanli
    Zeng, Qinglei
    Wang, Tao
    Zhuang, Zhuo
    Hwang, Keh-Chih
    [J]. ENGINEERING FRACTURE MECHANICS, 2017, 180 : 330 - 347