On strongly normal functions

被引:5
作者
Chen, HH
Gauthier, PM
机构
[1] NANJING NORMAL UNIV,DEPT MATH,NANJING 210024,PEOPLES R CHINA
[2] UNIV MONTREAL,DEPT MATH & STAT,MONTREAL,PQ H3C 3J7,CANADA
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 1996年 / 39卷 / 04期
关键词
normal functions; automorphic functions;
D O I
10.4153/CMB-1996-049-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Loosely speaking, a function (meromorphic or harmonic) from the hyperbolic disk of the complex plane to the Riemann sphere is normal if its dilatation is bounded. We call a function strongly normal if its dilatation vanishes at the boundary. A sequential property of this class of functions is proved. Certain integral conditions, known to be sufficient for normality, are shown to be in fact sufficient for strong normality.
引用
收藏
页码:408 / 419
页数:12
相关论文
共 9 条
[1]   ON ADDITIVE AUTOMORPHIC AND ROTATION AUTOMORPHIC-FUNCTIONS [J].
AULASKARI, R ;
LAPPAN, P .
ARKIV FOR MATEMATIK, 1984, 22 (01) :83-89
[2]  
AULASKARI R, 1990, ANN ACAD SCI FENN-M, V15, P201
[3]  
Aulaskari R., 1993, COMPLEX VARIABLES, V23, P213, DOI DOI 10.1080/17476939308814686
[4]  
Dufresnoy J., 1941, B SCI MATH, V65, P214
[5]   SOME RESULTS ON HARMONIC NORMAL FUNCTIONS [J].
LAPPAN, P .
MATHEMATISCHE ZEITSCHRIFT, 1965, 90 (02) :155-&
[6]  
Lappan P, 1964, COMMENT MATH U ST PA, V12, P41
[7]   BOUNDARY BEHAVIOUR AND NORMAL MEROMORPHIC FUNCTIONS [J].
LEHTO, O ;
VIRTANEN, KI .
ACTA MATHEMATICA, 1957, 97 (1-2) :47-65
[8]  
POMMERENKE C, 1974, MICH MATH J, V21, P193
[9]  
Schiff J.L., 1993, NORMAL FAMILIES