Effect of soil pollution with polycyclic aromatic hydrocarbons on the properties of humic acids

被引:24
作者
Banach-Szott, Magdalena [1 ]
Debska, Bozena [1 ]
Rosa, Ewa [1 ]
机构
[1] Univ Technol & Life Sci, Dept Environm Chem, PL-85029 Bydgoszcz, Poland
关键词
Elemental composition; FTIR; HPLC; Humic acids; PAHs; Soils; UV-Vis; ORGANIC-MATTER; PAHS; RESIDUES; BIOAVAILABILITY; HPLC; BIODEGRADATION; PHENANTHRENE; DEGRADATION; SUBSTANCES; FRACTIONS;
D O I
10.1007/s11368-014-0873-9
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Purpose Interestingly, soil is the component of the natural environment in which most hydrophobic organic pollution including polycyclic aromatic hydrocarbons (PAHs) gets accumulated. The aim of the present paper was to determine the effect of soil pollution with PAHs on the elemental composition, spectral properties, and hydrophobic and hydrophilic properties of humic acids. The research was performed on different types of soil samples that were artificially polluted with selected PAHs (anthracene, pyrene, fluorene and chrysene). Materials and methods The soil samples were polluted with selected PAHs in an amount corresponding to 10 mg PAHs kg(-1). The PAHs-polluted soil samples were incubated for 180 and 360 days at a temperature of 20-25 degrees C and fixed moisture (50 % of field water capacity). Humic acids (HAs) were extracted from the soil samples prior to the incubation (additionally, soils not polluted with PAHs) and after 180 and 360 days of incubation. For isolated HAs, the following analyses were performed: elemental composition, UV-Vis and IR spectra, susceptibility to oxidation, and hydrophilic (HIL) and hydrophobic (HOB) properties were determined using high-performance liquid chromatography. Results and discussion The research demonstrated that introducing anthracene, fluorene, pyrene and chrysene to soil samples resulted in a change in some of the quality parameters of humic acids. However, the intensity and the direction of those changes were determined by soil properties. The changes of the parameters, once PAHs were introduced, that did not depend on the soil properties were Delta A(665u) and Delta A(465u) (susceptibility to oxidation at wavelengths of 465 and 665 nm) as well as HIL/Sigma HOB. The same tendency in changes in the structure of humic acids, once PAHs were introduced, was also observed based on the Fourier transform infrared spectra pattern. Conclusions A single pollution of soils with PAHs that leads to changes in the quality parameters of humic acids shows that, as for the soils permanently exposed to pollution with those compounds, significant changes can occur in the properties of humic acids. As a result, it can lead to a change in the functions played by humic acids in the environment.
引用
收藏
页码:1169 / 1178
页数:10
相关论文
共 36 条
[1]  
[Anonymous], 2002, 179 COM
[2]   DEGRADATION AND MINERALIZATION OF THE POLYCYCLIC AROMATIC-HYDROCARBONS ANTHRACENE AND NAPHTHALENE IN INTERTIDAL MARINE-SEDIMENTS [J].
BAUER, JE ;
CAPONE, DG .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1985, 50 (01) :81-90
[3]  
Cocozza C., 2002, P 11 IHSS M, P264
[4]   PAHs in soils: contemporary UK data and evidence for potential contamination problems caused by exposure of samples to laboratory air [J].
Cousins, IT ;
Kreibich, H ;
Hudson, LE ;
Lead, WA ;
Jones, KC .
SCIENCE OF THE TOTAL ENVIRONMENT, 1997, 203 (02) :141-156
[5]  
Debska B., 2011, Polish Journal of Soil Science, V44, P97
[6]   Chromatographic characteristics (HPLC, HPSEC) of humic acids of soil fertilised with various organic fertilisers [J].
Debska, B. ;
Banach-Szott, M. ;
Dziamski, A. ;
Gonet, S. S. .
CHEMISTRY AND ECOLOGY, 2010, 26 :49-57
[7]  
Debska B., 2007, Soil and Water Research, V2, P45
[8]  
Debska B, 2012, POL J ENVIRON STUD, V21, P603
[9]   Fate and stability of nonextractable residues of [14C]PAH in contaminated soils under environmental stress conditions [J].
Eschenbach, A ;
Wienberg, R ;
Mahro, B .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1998, 32 (17) :2585-2590
[10]  
Gonet SS, 1999, ROST VYROBA, V45, P455