Energy quantization for Willmore surfaces and applications

被引:42
作者
Bernard, Yann [1 ]
Riviere, Tristan [2 ]
机构
[1] Univ Regensburg, Fak Math, D-93053 Regensburg, Germany
[2] ETH Zentrum, Zurich, Switzerland
关键词
REMOVABILITY; IMMERSIONS; EXISTENCE;
D O I
10.4007/annals.2014.180.1.2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a bubble-neck decomposition together with an energy quantization result for sequences of Willmore surfaces into R-m with uniformly bounded energy and nondegenerating conformal type. We deduce the strong compactnes of Willmore closed surfaces of a given genus modulo the Mobius group action, below some energy threshold.
引用
收藏
页码:87 / 136
页数:50
相关论文
共 36 条
[31]   Estimation of the conformal factor under bounded Willmore energy [J].
Schaetzle, Reiner Michael .
MATHEMATISCHE ZEITSCHRIFT, 2013, 274 (3-4) :1341-1383
[32]  
SCHOEN R, 1983, J DIFFER GEOM, V18, P253
[33]  
Simon L., 1993, COMMUN ANAL GEOM, V1, P281, DOI 10.4310/CAG.1993.v1.n2.a4
[34]   ON THE EVOLUTION OF HARMONIC-MAPPINGS OF RIEMANNIAN SURFACES [J].
STRUWE, M .
COMMENTARII MATHEMATICI HELVETICI, 1985, 60 (04) :558-581
[35]   GEOMETRIC CONDITIONS AND EXISTENCE OF BI-LIPSCHITZ PARAMETERIZATIONS [J].
TORO, T .
DUKE MATHEMATICAL JOURNAL, 1995, 77 (01) :193-227
[36]   Harmonic maps from degenerating Riemann surfaces [J].
Zhu, Miaomiao .
MATHEMATISCHE ZEITSCHRIFT, 2010, 264 (01) :63-85