Energy quantization for Willmore surfaces and applications

被引:41
作者
Bernard, Yann [1 ]
Riviere, Tristan [2 ]
机构
[1] Univ Regensburg, Fak Math, D-93053 Regensburg, Germany
[2] ETH Zentrum, Zurich, Switzerland
关键词
REMOVABILITY; IMMERSIONS; EXISTENCE;
D O I
10.4007/annals.2014.180.1.2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a bubble-neck decomposition together with an energy quantization result for sequences of Willmore surfaces into R-m with uniformly bounded energy and nondegenerating conformal type. We deduce the strong compactnes of Willmore closed surfaces of a given genus modulo the Mobius group action, below some energy threshold.
引用
收藏
页码:87 / 136
页数:50
相关论文
共 36 条
[1]  
[Anonymous], 1995, Comm. Anal. Geom., DOI DOI 10.4310/CAG.1995.V3.N4.A1
[2]  
Aubin T., 1982, Nonlinear Analysis on Manifolds. Monge-Ampre Equations, DOI [10.1007/978-1-4612-5734-9, DOI 10.1007/978-1-4612-5734-9]
[3]  
Bauer M, 2003, INT MATH RES NOTICES, V2003, P553
[4]  
BERNARD Y., 2013, NOETHERS THEOREM WIL
[5]   SINGULARITY REMOVABILITY AT BRANCH POINTS FOR WILLMORE SURFACES [J].
Bernard, Yann ;
Riviere, Tristan .
PACIFIC JOURNAL OF MATHEMATICS, 2013, 265 (02) :257-311
[6]  
Bernard Y, 2011, COMMUN ANAL GEOM, V19, P563
[7]  
BLASCHKE W., 1929, GRUNDLEHREN MATH WIS, V39
[8]  
BRYANT RL, 1984, J DIFFER GEOM, V20, P23
[9]  
Butscher A, 2006, ANN SCUOLA NORM-SCI, V5, P611
[10]   A remark on generalized harmonic maps into spheres [J].
Ge, YX .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 36 (04) :495-506