Characterizing and controlling the inflammatory network during influenza A virus infection

被引:52
作者
Jin, Suoqin [1 ]
Li, Yuanyuan [1 ]
Pan, Ruangang [2 ]
Zou, Xiufen [1 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Coll Life Sci, State Key Lab Virol, Wuhan 430072, Peoples R China
来源
SCIENTIFIC REPORTS | 2014年 / 4卷
基金
中国国家自然科学基金;
关键词
PROINFLAMMATORY CYTOKINES; HUMAN MACROPHAGES; H5N1; VIRUSES; MECHANISM; IDENTIFICATION; INHIBITION; INDUCTION; DATABASE; ORIGIN; TOOLS;
D O I
10.1038/srep03799
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
To gain insights into the pathogenesis of influenza A virus (IAV) infections, this study focused on characterizing the inflammatory network and identifying key proteins by combining high-throughput data and computational techniques. We constructed the cell-specific normal and inflammatory networks for H5N1 and H1N1 infections through integrating high-throughput data. We demonstrated that better discrimination between normal and inflammatory networks by network entropy than by other topological metrics. Moreover, we identified different dynamical interactions among TLR2, IL-1 beta, IL10 and NF kappa B between normal and inflammatory networks using optimization algorithm. In particular, good robustness and multistability of inflammatory sub-networks were discovered. Furthermore, we identified a complex, TNFSF10/HDAC4/HDAC5, which may play important roles in controlling inflammation, and demonstrated that changes in network entropy of this complex negatively correlated to those of three proteins: TNF alpha, NF kappa B and COX-2. These findings provide significant hypotheses for further exploring the molecular mechanisms of infectious diseases and developing control strategies.
引用
收藏
页数:14
相关论文
共 59 条
[1]   The Biomolecular Interaction Network Database and related tools 2005 update [J].
Alfarano, C ;
Andrade, CE ;
Anthony, K ;
Bahroos, N ;
Bajec, M ;
Bantoft, K ;
Betel, D ;
Bobechko, B ;
Boutilier, K ;
Burgess, E ;
Buzadzija, K ;
Cavero, R ;
D'Abreo, C ;
Donaldson, I ;
Dorairajoo, D ;
Dumontier, MJ ;
Dumontier, MR ;
Earles, V ;
Farrall, R ;
Feldman, H ;
Garderman, E ;
Gong, Y ;
Gonzaga, R ;
Grytsan, V ;
Gryz, E ;
Gu, V ;
Haldorsen, E ;
Halupa, A ;
Haw, R ;
Hrvojic, A ;
Hurrell, L ;
Isserlin, R ;
Jack, F ;
Juma, F ;
Khan, A ;
Kon, T ;
Konopinsky, S ;
Le, V ;
Lee, E ;
Ling, S ;
Magidin, M ;
Moniakis, J ;
Montojo, J ;
Moore, S ;
Muskat, B ;
Ng, I ;
Paraiso, JP ;
Parker, B ;
Pintilie, G ;
Pirone, R .
NUCLEIC ACIDS RESEARCH, 2005, 33 :D418-D424
[2]   Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feed back systems [J].
Angeli, D ;
Ferrell, JE ;
Sontag, ED .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (07) :1822-1827
[3]  
[Anonymous], 1997, Journal of Global Optimization, DOI DOI 10.1023/A:1008202821328
[4]   Computing topological parameters of biological networks [J].
Assenov, Yassen ;
Ramirez, Fidel ;
Schelhorn, Sven-Eric ;
Lengauer, Thomas ;
Albrecht, Mario .
BIOINFORMATICS, 2008, 24 (02) :282-284
[5]   Network medicine: a network-based approach to human disease [J].
Barabasi, Albert-Laszlo ;
Gulbahce, Natali ;
Loscalzo, Joseph .
NATURE REVIEWS GENETICS, 2011, 12 (01) :56-68
[6]   NCBI GEO: archive for functional genomics data sets-update [J].
Barrett, Tanya ;
Wilhite, Stephen E. ;
Ledoux, Pierre ;
Evangelista, Carlos ;
Kim, Irene F. ;
Tomashevsky, Maxim ;
Marshall, Kimberly A. ;
Phillippy, Katherine H. ;
Sherman, Patti M. ;
Holko, Michelle ;
Yefanov, Andrey ;
Lee, Hyeseung ;
Zhang, Naigong ;
Robertson, Cynthia L. ;
Serova, Nadezhda ;
Davis, Sean ;
Soboleva, Alexandra .
NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) :D991-D995
[7]   The Energy Costs of Insulators in Biochemical Networks [J].
Barton, John P. ;
Sontag, Eduardo D. .
BIOPHYSICAL JOURNAL, 2013, 104 (06) :1380-1390
[8]   A Systems Analysis Identifies a Feedforward Inflammatory Circuit Leading to Lethal Influenza Infection [J].
Brandes, Marlene ;
Klauschen, Frederick ;
Kuchen, Stefan ;
Germain, Ronald N. .
CELL, 2013, 154 (01) :197-212
[9]   How Information Theory Handles Cell Signaling and Uncertainty [J].
Brennan, Matthew D. ;
Cheong, Raymond ;
Levchenko, Andre .
SCIENCE, 2012, 338 (6105) :334-335
[10]   T cell receptor signalling networks: branched, diversified and bounded [J].
Brownlie, Rebecca J. ;
Zamoyska, Rose .
NATURE REVIEWS IMMUNOLOGY, 2013, 13 (04) :257-269