MONTE CARLO MAXIMUM LIKELIHOOD ESTIMATION FOR DISCRETELY OBSERVED DIFFUSION PROCESSES

被引:45
|
作者
Beskos, Alexandros [1 ]
Papaspiliopoulos, Omiros [1 ]
Roberts, Gareth [1 ]
机构
[1] Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England
来源
ANNALS OF STATISTICS | 2009年 / 37卷 / 01期
基金
英国工程与自然科学研究理事会;
关键词
Coupling; uniform convergence; exact simulation; linear diffusion processes; random function; SLLN on Banach space; EXACT SIMULATION; INFERENCE; MODELS; CONVERGENCE; CONSISTENCY; TIME;
D O I
10.1214/07-AOS550
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper introduces a Monte Carlo method for maximum likelihood inference in the context of discretely observed diffusion processes. The method gives unbiased and a.s. continuous estimators of the likelihood function for a family of diffusion models aid its performance in numerical examples is computationally efficient. It uses a recently developed technique for the exact simulation of diffusions, and involves no discretization error. We show that, under regularity conditions, the Monte Carlo MLE converges a.s. to the true MLE. For datasize n -> infinity, we show that the number of Monte Carlo iterations should be tuned as O (n(1/2)) and we demonstrate the consistency properties of the Monte Carlo MLE as an estimator of the true parameter value.
引用
收藏
页码:223 / 245
页数:23
相关论文
共 50 条
  • [31] MONTE-CARLO EVIDENCE ON ADAPTIVE MAXIMUM-LIKELIHOOD-ESTIMATION OF A REGRESSION
    HSIEH, DA
    MANSKI, CF
    ANNALS OF STATISTICS, 1987, 15 (02): : 541 - 551
  • [32] Efficient Monte Carlo algorithm for restricted maximum likelihood estimation of genetic parameters
    Matilainen, Kaarina
    Mantysaari, Esa A.
    Stranden, Ismo
    JOURNAL OF ANIMAL BREEDING AND GENETICS, 2019, 136 (04) : 252 - 261
  • [33] Pseudo-likelihood estimation for discretely observed multitype Bellman-Harris branching processes
    Hyrien, Ollivier
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2007, 137 (04) : 1375 - 1388
  • [34] Maximum Likelihood Estimation of Parameters of a Random Variable Using Monte Carlo Methods
    Saci, Oualid
    Ourbih-Tari, Megdouda
    Baiche, Leila
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2023, 85 (01): : 540 - 571
  • [35] Online sequential Monte Carlo smoother for partially observed diffusion processes
    Pierre Gloaguen
    Marie-Pierre Étienne
    Sylvain Le Corff
    EURASIP Journal on Advances in Signal Processing, 2018
  • [36] Online sequential Monte Carlo smoother for partially observed diffusion processes
    Gloaguen, Pierre
    Etienne, Marie-Pierre
    Le Corff, Sylvain
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2018,
  • [37] ASYMPTOTICS OF MONTE CARLO MAXIMUM LIKELIHOOD ESTIMATORS
    Miasojedow, Blazej
    Niemiro, Wojciech
    Palczewski, Jan
    Rejchel, Wojciech
    PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2016, 36 (02): : 295 - 310
  • [38] Estimation of Link Choice Probabilities Using Monte Carlo Simulation and Maximum Likelihood Estimation Method
    Seger, Mundher Ali
    Kisgyorgy, Lajos
    PERIODICA POLYTECHNICA-CIVIL ENGINEERING, 2020, 64 (01): : 20 - 32
  • [39] M-estimation for discretely observed ergodic diffusion processes with infinitely many jumps
    Shimizu Y.
    Statistical Inference for Stochastic Processes, 2006, 9 (2) : 179 - 225
  • [40] Test for parameter change in discretely observed diffusion processes
    Song J.
    Lee S.
    Statistical Inference for Stochastic Processes, 2009, 12 (2) : 165 - 183