MONTE CARLO MAXIMUM LIKELIHOOD ESTIMATION FOR DISCRETELY OBSERVED DIFFUSION PROCESSES

被引:45
|
作者
Beskos, Alexandros [1 ]
Papaspiliopoulos, Omiros [1 ]
Roberts, Gareth [1 ]
机构
[1] Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England
来源
ANNALS OF STATISTICS | 2009年 / 37卷 / 01期
基金
英国工程与自然科学研究理事会;
关键词
Coupling; uniform convergence; exact simulation; linear diffusion processes; random function; SLLN on Banach space; EXACT SIMULATION; INFERENCE; MODELS; CONVERGENCE; CONSISTENCY; TIME;
D O I
10.1214/07-AOS550
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper introduces a Monte Carlo method for maximum likelihood inference in the context of discretely observed diffusion processes. The method gives unbiased and a.s. continuous estimators of the likelihood function for a family of diffusion models aid its performance in numerical examples is computationally efficient. It uses a recently developed technique for the exact simulation of diffusions, and involves no discretization error. We show that, under regularity conditions, the Monte Carlo MLE converges a.s. to the true MLE. For datasize n -> infinity, we show that the number of Monte Carlo iterations should be tuned as O (n(1/2)) and we demonstrate the consistency properties of the Monte Carlo MLE as an estimator of the true parameter value.
引用
收藏
页码:223 / 245
页数:23
相关论文
共 50 条