3D Si/C particulate nanocomposites internally wired with graphene networks for high energy and stable batteries

被引:39
作者
Kim, Jaegyeong [1 ]
Oh, Changil [1 ]
Chae, Changju [1 ,2 ]
Yeom, Dae-Hoon [1 ]
Choi, Jaeho [1 ]
Kim, Nahyeon [1 ]
Oh, Eun-Suok [3 ]
Lee, Jung Kyoo [1 ]
机构
[1] Dong A Univ, Dept Chem Engn, Busan 604714, South Korea
[2] Korea Res Inst Chem Technol, Div Adv Mat, Taejon 305600, South Korea
[3] Univ Ulsan, Sch Chem Engn & Bioengn, Ulsan 680749, South Korea
基金
新加坡国家研究基金会;
关键词
HIGH-PERFORMANCE ANODES; LITHIUM-ION; FLUOROETHYLENE CARBONATE; SILICON NANOPARTICLES; OXIDE SHEETS; COMPOSITE; DESIGN; ELECTRODES; CAPACITY; CATHODE;
D O I
10.1039/c5ta04681e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
It is challenging to design silicon anodes exhibiting stable cycling behavior, high volumetric and specific capacity, and low volume expansion for Li-based batteries. Herein, we designed Si/C-IWGN composites (Si/C composites internally wired with graphene networks). For this purpose, we used simple aqueous sol-gel systems consisting of varying amounts of silicon nanoparticles, resorcinol-formaldehyde, and graphene oxide. We found that a small amount of graphene (1-10 wt%) in Si/C-IWGNs efficiently stabilized their cycling behavior. The enhanced cycling stability of Si/C-IWGNs could be ascribed to the following facts: (1) ideally dispersed graphene networks were formed in the composites, (2) these graphene networks also created enough void spaces for silicon to expand and contract with the electrode thickness increase comparable to that of graphite. Furthermore, properly designed Si/C-IWGNs exhibited a high volumetric capacity of similar to 141% greater than that of commercial graphite. Finally, a hybrid sample, Si-Gr, consisting of a high capacity Si/C-IWGN and graphite was prepared to demonstrate a hybrid strategy for a reliable and cost-effective anode with a capacity level required for high-energy Li-ion cells. The Si-Gr hybrid exhibited not only high capacity (800-900 mA h g(-1) at 100 mA g(-1)) but also a high electrode volumetric capacity of 161% greater than that of graphite.
引用
收藏
页码:18684 / 18695
页数:12
相关论文
共 56 条
[1]   A Lithium-Ion Sulfur Battery Based on a Carbon-Coated Lithium-Sulfide Cathode and an Electrodeposited Silicon-Based Anode [J].
Agostini, Marco ;
Hassoun, Jusef ;
Liu, Jun ;
Jeong, Moongook ;
Nara, Hiroki ;
Momma, Toshiyuki ;
Osaka, Tetsuya ;
Sun, Yang-Kook ;
Scrosati, Bruno .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (14) :10924-10928
[2]   High-Performance Macroporous Bulk Silicon Anodes Synthesized by Template-Free Chemical Etching [J].
Bang, Byoung Man ;
Lee, Jung-In ;
Kim, Hyunjung ;
Cho, Jaephil ;
Park, Soojin .
ADVANCED ENERGY MATERIALS, 2012, 2 (07) :878-883
[3]   Si electrodes for li-ion batteries - A new way to look at an old problem [J].
Beattie, S. D. ;
Larcher, D. ;
Morcrette, M. ;
Simon, B. ;
Tarascon, J. -M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (02) :A158-A163
[4]   A High-Energy Li-Ion Battery Using a Silicon-Based Anode and a Nano-Structured Layered Composite Cathode [J].
Chae, Changju ;
Noh, Hyung-Joo ;
Lee, Jung Kyoo ;
Scrosati, Bruno ;
Sun, Yang-Kook .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (20) :3036-3042
[5]   Silicon core-hollow carbon shell nanocomposites with tunable buffer voids for high capacity anodes of lithium-ion batteries [J].
Chen, Shuru ;
Gordin, Mikhail L. ;
Yi, Ran ;
Howlett, Giles ;
Sohn, Hiesang ;
Wang, Donghai .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (37) :12741-12745
[6]   Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode [J].
Choi, Nam-Soon ;
Yew, Kyoung Han ;
Lee, Kyu Youl ;
Sung, Minseok ;
Kim, Ho ;
Kim, Sung-Soo .
JOURNAL OF POWER SOURCES, 2006, 161 (02) :1254-1259
[7]   Rechargeable lithiated silicon-sulfur (SLS) battery prototypes [J].
Elazari, Ran ;
Salitra, Gregory ;
Gershinsky, Gregory ;
Garsuch, Arnd ;
Panchenko, Alexander ;
Aurbach, Doron .
ELECTROCHEMISTRY COMMUNICATIONS, 2012, 14 (01) :21-24
[8]   Nanosilicon-Coated Graphene Granules as Anodes for Li-Ion Batteries [J].
Evanoff, Kara ;
Magasinski, Alexandre ;
Yang, Junbing ;
Yushin, Gleb .
ADVANCED ENERGY MATERIALS, 2011, 1 (04) :495-498
[9]  
Favors Z., 2014, SCI REP, V4, P7
[10]   Large-Scale Fabrication, 3D Tomography, and Lithium-Ion Battery Application of Porous Silicon [J].
Ge, Mingyuan ;
Lu, Yunhao ;
Ercius, Peter ;
Rong, Jiepeng ;
Fang, Xin ;
Mecklenburg, Matthew ;
Zhou, Chongwu .
NANO LETTERS, 2014, 14 (01) :261-268