Mathematical Model of Proton Exchange Membrane Fuel Cell with Consideration of Water Management

被引:9
作者
Yin, K. -M. [1 ]
Hsuen, H. -K. [1 ]
机构
[1] Yuan Ze Univ, Dept Chem Engn & Mat Sci, Taoyuan 32003, Taiwan
关键词
Gas Diffusion Electrode; Liquid Water Front; Mathematical Model; Membrane Electrode Assembly; PEM Fuel Cell; Pseudo-Phase Equilibrium Approach; Water Management; GAS-DIFFUSION LAYER; PLANE POROSITY DISTRIBUTIONS; PERFORMANCE EQUATIONS; 2-PHASE FLOW; OXYGEN REDUCTION; POROUS-MEDIA; CATHODE; TRANSPORT; PEMFC; SIMULATION;
D O I
10.1002/fuce.201300006
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
One-dimensional model on the membrane electrode assembly (MEA) of proton exchange membrane fuel cell is proposed, where the membrane hydration/dehydration and the possible water flooding of the respective cathode and anode gas diffusion layers are considered. A novel approach of phase-equilibrium approximation is proposed to trace the water front and the detailed saturation profile once water emerges in either anode or cathode gas diffusion layer. The approach is validated by a semi-analytical method published earlier. The novel approach is applicable to the polarization regime from open circuit voltage to the limiting current density under practical operation conditions. Oxygen diffusion is limited by water accumulation in the cathode gas diffusion layer as current increases, caused by excessive water generation at the cathode catalyst layer and the electro-osmotic drag across the membrane. The existence of liquid water in the anode gas diffusion layer is predicted at low current densities if high degrees of humidification in both anode and cathode feeds are employed. The influences of inlet relative humidity, imposed pressure drop, and cell temperature are correlated well with the cell performance. In addition, the overpotentials attributed from individual components of the MEA are delineated against the cell current densities.
引用
收藏
页码:1213 / 1225
页数:13
相关论文
共 50 条
  • [1] A generalized numerical model for liquid water in a proton exchange membrane fuel cell with interdigitated design
    Le, Anh Dinh
    Zhou, Biao
    JOURNAL OF POWER SOURCES, 2009, 193 (02) : 665 - 683
  • [2] A numerical model for estimation of water droplet size in the anode channel of a proton exchange membrane fuel cell
    Mohammadzadeh, Kazem
    Kaldehi, Bahare Jahani
    Jazmi, Ramin
    Khaleghi, Hassan
    Maddahian, Reza
    Shirani, Ebrahim
    JOURNAL OF ENERGY STORAGE, 2019, 26
  • [3] A review of proton exchange membrane fuel cell water management: Membrane electrode assembly
    Liu, Qingshan
    Lan, Fengchong
    Chen, Jiqing
    Zeng, Changjing
    Wang, Junfeng
    JOURNAL OF POWER SOURCES, 2022, 517
  • [4] Water management in a single cell proton exchange membrane fuel cells with a serpentine flow field
    Hassan, Nik Suhaimi Mat
    Daud, Wan Ramli Wan
    Sopian, Kamaruzzaman
    Sahari, Jaafar
    JOURNAL OF POWER SOURCES, 2009, 193 (01) : 249 - 257
  • [5] A passive method of water management for an air-breathing proton exchange membrane fuel cell
    Kumar, P. Manoj
    Parthasarathy, V.
    ENERGY, 2013, 51 : 457 - 461
  • [6] Dynamic modeling and water management in proton exchange membrane fuel cell
    Haddad, Ahmad
    Bouyekhf, Rachid
    El Moudni, Abdellah
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (21) : 6239 - 6252
  • [7] Parallel serpentine-baffle flow field design for water management in a proton exchange membrane fuel cell
    Belchor, Pablo Martins
    Camargo Forte, Maria Madalena
    Ortiz Suman Carpenter, Deyse Elisabeth
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (16) : 11904 - 11911
  • [8] Effects of flow field combination in proton exchange membrane fuel cells on water management
    Choi, Bogeun
    Im, Seongsu
    Jang, Segu
    Na, Youngseung
    ELECTROCHIMICA ACTA, 2025, 515
  • [9] A review of water management methods in proton exchange membrane fuel cells
    Baz, Faisal B.
    Elzohary, Radwan M.
    Osman, Sameer
    Marzouk, S. A.
    Ahmed, Mahmoud
    ENERGY CONVERSION AND MANAGEMENT, 2024, 302
  • [10] Nanofiber Cathode Catalyst Layer Model for a Proton Exchange Membrane Fuel Cell
    Dever, Dennis O.
    Cairncross, Richard A.
    Elabd, Yossef A.
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2014, 11 (04):