Oxygen reduction reaction over nitrogen-doped graphene oxide cathodes in acid and alkaline fuel cells at intermediate temperatures

被引:37
作者
Hibino, Takashi [1 ]
Kobayashi, Kazuyo [1 ]
Heo, Pilwon [2 ]
机构
[1] Nagoya Univ, Grad Sch Environm Studies, Chikusa Ku, Nagoya, Aichi 4648601, Japan
[2] Samsung Adv Inst Technol, Energy Lab, Gyeonggi Do 446712, South Korea
关键词
Graphene; Nitrogen doping; Oxygen reduction reaction; Intermediate-temperature operation; METAL-FREE ELECTROCATALYSTS; EXCHANGE MEMBRANES; ELECTROLYTE; NANOSHEETS; CATALYSTS; SHEETS;
D O I
10.1016/j.electacta.2013.08.101
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Graphene oxides with various nitrogen contents were prepared by annealing them in an NH3 flow between 350 and 850 degrees C, and their electrocatalytic properties toward the oxygen reduction reaction (ORR) in acid and alkaline fuel cells at intermediate temperatures were investigated. In both acid and alkaline fuel cells, graphene oxide treated with NH3 at 700 degrees C for 1 h was the most active cathode at operating temperatures between 75 and 200 degrees C, where the ORR activity was enhanced by an increase in the operating temperature. This cathode also exhibited high chemical and thermal stability toward the ORR. X-ray photoelectron and Raman spectroscopic measurements of the nitrogen-doped graphene oxides indicated that the pyridinic nitrogen introduced disordered edge planes into the graphene structure. BET analysis also revealed that the surface area of graphene oxide was increased by the exposure of such edge planes. These observations lead to the assumption that the defects introduced by pyridinic nitrogen act as active sites for the ORR. Considering the similarity in ORR activity between the acid and alkaline fuel cells, dissociative adsorption of O-2 at the active site is a rate-determining step. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:82 / 89
页数:8
相关论文
共 37 条
  • [1] Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest
    Antonio Asensio, Juan
    Sanchez, Eduardo M.
    Gomez-Romero, Pedro
    [J]. CHEMICAL SOCIETY REVIEWS, 2010, 39 (08) : 3210 - 3239
  • [2] High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC) - A review
    Chandan, Amrit
    Hattenberger, Mariska
    El-Kharouf, Ahmad
    Du, Shangfeng
    Dhir, Aman
    Self, Valerie
    Pollet, Bruno G.
    Ingram, Andrew
    Bujalski, Waldemar
    [J]. JOURNAL OF POWER SOURCES, 2013, 231 : 264 - 278
  • [3] Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials
    Compton, Owen C.
    Nguyen, SonBinh T.
    [J]. SMALL, 2010, 6 (06) : 711 - 723
  • [4] Toward N-Doped Graphene via Solvothermal Synthesis
    Deng, Dehui
    Pan, Xiulian
    Yu, Liang
    Cui, Yi
    Jiang, Yeping
    Qi, Jing
    Li, Wei-Xue
    Fu, Qiang
    Ma, Xucun
    Xue, Qikun
    Sun, Gongquan
    Bao, Xinhe
    [J]. CHEMISTRY OF MATERIALS, 2011, 23 (05) : 1188 - 1193
  • [5] Easy-to-Operate and Low-Temperature Synthesis of Gram-Scale Nitrogen-Doped Graphene and Its Application as Cathode Catalyst in Microbial Fuel Cells
    Feng, Leiyu
    Chen, Yinguang
    Chen, Lang
    [J]. ACS NANO, 2011, 5 (12) : 9611 - 9618
  • [6] Nitrogen doping effects on the structure of graphene
    Geng, Dongsheng
    Yang, Songlan
    Zhang, Yong
    Yang, Jinli
    Liu, Jian
    Li, Ruying
    Sham, Tsun-Kong
    Sun, Xueliang
    Ye, Siyu
    Knights, Shanna
    [J]. APPLIED SURFACE SCIENCE, 2011, 257 (21) : 9193 - 9198
  • [7] High oxygen-reduction activity and durability of nitrogen-doped graphene
    Geng, Dongsheng
    Chen, Ying
    Chen, Yougui
    Li, Yongliang
    Li, Ruying
    Sun, Xueliang
    Ye, Siyu
    Knights, Shanna
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (03) : 760 - 764
  • [8] Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction
    Gong, Kuanping
    Du, Feng
    Xia, Zhenhai
    Durstock, Michael
    Dai, Liming
    [J]. SCIENCE, 2009, 323 (5915) : 760 - 764
  • [9] Raman scattering from high-frequency phonons in supported n-graphene layer films
    Gupta, A.
    Chen, G.
    Joshi, P.
    Tadigadapa, S.
    Eklund, P. C.
    [J]. NANO LETTERS, 2006, 6 (12) : 2667 - 2673
  • [10] A proton-conducting fuel cell operating with hydrocarbon fuels
    Heo, Pilwon
    Ito, Kenichi
    Tomita, Atsuko
    Hibino, Takashi
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (41) : 7841 - 7844