Performance of hybrid refrigeration system using ammonia

被引:16
作者
Lychnos, G. [1 ]
Tamainot-Telto, Z. [1 ]
机构
[1] Univ Warwick, Sch Engn, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
Adsorption; Vapour compression; Ammonia; Hybrid refrigeration; COP;
D O I
10.1016/j.applthermaleng.2013.10.013
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper investigates the performance of a hybrid refrigeration system that combines sorption conventional vapour compression refrigeration machine driven by dual source (heat and/or electricity). The dual source makes the system highly flexible and energy efficient. The ammonia refrigerant (R717) is used in both adsorption and associated conventional refrigeration cycles. The model of thermal compressor corresponds to a multiple pair of compact adsorption generators operating out of phase with both heat and mass recovery for continuous cooling production and better efficiency. Each generator is based on a plate heat exchanger concept using the activated carbon ammonia pair. The model of conventional vapour compressor is a reciprocating compressor from Frigopol. The hybrid refrigeration performances are presented mainly for ice making and air conditioning applications (T-C = 40 degrees C, -5 degrees C < T-E < 20 degrees C). The exhaust temperature of the compressor (driving temperature for thermal compressor) varies from 90 degrees C to 250 degrees C. The results show a cooling production ranging from 4 kW to 12 kW with back-up mode (both cycles not operating simultaneously) and from 8 kW to 24 kW with complementary mode (both cycles operating simultaneously). The effective overall COP based on the total equivalent heat rate input varies from 0.24 to 0.76. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:560 / 565
页数:6
相关论文
共 14 条
[1]  
Arora C.P., 2009, REFRIGERATION AIR CO, p[87, 236]
[2]   Performance studies on mechanical plus adsorption hybrid compression refrigeration cycles with HFC 134a [J].
Banker, N. D. ;
Dutta, P. ;
Prasad, M. ;
Srinivasan, K. .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2008, 31 (08) :1398-1406
[3]   Specific cooling power intensification limits in ammonia-carbon adsorption refrigeration systems [J].
Critoph, RE ;
Metcalf, SJ .
APPLIED THERMAL ENGINEERING, 2004, 24 (5-6) :661-678
[4]  
Frigopol, 2012, NH3 SEP HOOD REFR CO
[5]   Development of a suction-pump-assisted thermal and electrical hybrid adsorption heat pump [J].
Hirota, Yasuki ;
Sugiyama, Yukiteru ;
Kubota, Mitsuhiro ;
Watanabe, Fujio ;
Kobayashi, Noriyuki ;
Hasatani, Masanobu ;
Kanamori, Mitihito .
APPLIED THERMAL ENGINEERING, 2008, 28 (13) :1687-1693
[6]  
International Energy Agency, 2010, POW GEN COAL 2010 ME
[7]   Optimal cycle selection in carbon-ammonia adsorption cycles [J].
Metcalf, S. J. ;
Critoph, R. E. ;
Tamainot-Telto, Z. .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2012, 35 (03) :571-580
[8]   Application of a compact sorption generator to solar refrigeration: Case study of Dakar (Senegal) [J].
Metcalf, S. J. ;
Tamainot-Telto, Z. ;
Critoph, R. E. .
APPLIED THERMAL ENGINEERING, 2011, 31 (14-15) :2197-2204
[9]  
Metcalf S. J., 2009, COMPACT HIGH EFFICIE
[10]   Carbon-ammonia pairs for adsorption refrigeration applications: ice making, air conditioning and heat pumping [J].
Tamainot-Telto, Z. ;
Metcalf, S. J. ;
Critoph, R. E. ;
Zhong, Y. ;
Thorpe, R. .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2009, 32 (06) :1212-1229