A Parareal Finite Volume Method for Variable-Order Time-Fractional Diffusion Equations

被引:10
|
作者
Liu, Huan [1 ]
Cheng, Aijie [1 ]
Wang, Hong [2 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
[2] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Time-fractional diffusion equation; Variable-order; Finite volume method; Parareal; Well-posedness; SPECTRAL COLLOCATION METHOD; DIFFERENCE METHOD; NUMERICAL-METHODS; ANOMALOUS-DIFFUSION; SPACE; REGULARITY;
D O I
10.1007/s10915-020-01321-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the well-posedness and solution regularity of a variable-order time-fractional diffusion equation, which is often used to model the solute transport in complex porous media where the micro-structure of the porous media may changes over time. We show that the variable-order time-fractional diffusion equations have flexible abilities to eliminate the nonphysical singularity of the solutions to their constant-order analogues. We also present a finite volume approximation and provide its stability and convergence analysis in a weighted discrete norm. Furthermore, we develop an efficient parallel-in-time procedure to improve the computational efficiency of the variable-order time-fractional diffusion equations. Numerical experiments are performed to confirm the theoretical results and to demonstrate the effectiveness and efficiency of the parallel-in-time method.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] A Parareal Finite Volume Method for Variable-Order Time-Fractional Diffusion Equations
    Huan Liu
    Aijie Cheng
    Hong Wang
    Journal of Scientific Computing, 2020, 85
  • [2] Wellposedness and regularity of the variable-order time-fractional diffusion equations
    Wang, Hong
    Zheng, Xiangcheng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 475 (02) : 1778 - 1802
  • [3] Uniqueness of determining the variable fractional order in variable-order time-fractional diffusion equations
    Zheng, Xiangcheng
    Cheng, Jin
    Wang, Hong
    INVERSE PROBLEMS, 2019, 35 (12)
  • [4] A fast method for variable-order Caputo fractional derivative with applications to time-fractional diffusion equations
    Fang, Zhi-Wei
    Sun, Hai-Wei
    Wang, Hong
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (05) : 1443 - 1458
  • [5] ANALYSIS OF A MULTI-TERM VARIABLE-ORDER TIME-FRACTIONAL DIFFUSION EQUATION AND ITS GALERKIN FINITE ELEMENT APPROXIMATION
    Liu, Huan
    Null, Xiangcheng Zheng
    Fu, Hongfei
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2022, 40 (05): : 818 - 838
  • [6] A Support Vector Machine Method for Two Time-Scale Variable-Order Time-Fractional Diffusion Equations
    Yang, Zhiwei
    Liu, Huan
    Guo, Xu
    Wang, Hong
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2022, 12 (01) : 145 - 162
  • [7] A two-grid MMOC finite element method for nonlinear variable-order time-fractional mobile immobile advection-diffusion equations
    Chen, Chuanjun
    Liu, Huan
    Zheng, Xiangcheng
    Wang, Hong
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (09) : 2771 - 2783
  • [8] Wellposedness and smoothing properties of history-state-based variable-order time-fractional diffusion equations
    Zheng, Xiangcheng
    Wang, Hong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (01):
  • [9] All-at-once method for variable-order time fractional diffusion equations
    Pang, Hong-Kui
    Qin, Hai-Hua
    Sun, Hai-Wei
    NUMERICAL ALGORITHMS, 2022, 90 (01) : 31 - 57
  • [10] Exponential-sum-approximation technique for variable-order time-fractional diffusion equations
    Zhang, Jia-Li
    Fang, Zhi-Wei
    Sun, Hai-Wei
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (01) : 323 - 347