A Parareal Finite Volume Method for Variable-Order Time-Fractional Diffusion Equations

被引:10
|
作者
Liu, Huan [1 ]
Cheng, Aijie [1 ]
Wang, Hong [2 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
[2] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Time-fractional diffusion equation; Variable-order; Finite volume method; Parareal; Well-posedness; SPECTRAL COLLOCATION METHOD; DIFFERENCE METHOD; NUMERICAL-METHODS; ANOMALOUS-DIFFUSION; SPACE; REGULARITY;
D O I
10.1007/s10915-020-01321-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the well-posedness and solution regularity of a variable-order time-fractional diffusion equation, which is often used to model the solute transport in complex porous media where the micro-structure of the porous media may changes over time. We show that the variable-order time-fractional diffusion equations have flexible abilities to eliminate the nonphysical singularity of the solutions to their constant-order analogues. We also present a finite volume approximation and provide its stability and convergence analysis in a weighted discrete norm. Furthermore, we develop an efficient parallel-in-time procedure to improve the computational efficiency of the variable-order time-fractional diffusion equations. Numerical experiments are performed to confirm the theoretical results and to demonstrate the effectiveness and efficiency of the parallel-in-time method.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] A Parareal Finite Volume Method for Variable-Order Time-Fractional Diffusion Equations
    Huan Liu
    Aijie Cheng
    Hong Wang
    Journal of Scientific Computing, 2020, 85
  • [2] Uniqueness of determining the variable fractional order in variable-order time-fractional diffusion equations
    Zheng, Xiangcheng
    Cheng, Jin
    Wang, Hong
    INVERSE PROBLEMS, 2019, 35 (12)
  • [3] Wellposedness and regularity of the variable-order time-fractional diffusion equations
    Wang, Hong
    Zheng, Xiangcheng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 475 (02) : 1778 - 1802
  • [4] A fast method for variable-order Caputo fractional derivative with applications to time-fractional diffusion equations
    Fang, Zhi-Wei
    Sun, Hai-Wei
    Wang, Hong
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (05) : 1443 - 1458
  • [5] Optimal order finite difference local discontinuous Galerkin method for variable-order time-fractional diffusion equation
    Wei, Leilei
    Yang, Yanfang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 383
  • [6] A Support Vector Machine Method for Two Time-Scale Variable-Order Time-Fractional Diffusion Equations
    Yang, Zhiwei
    Liu, Huan
    Guo, Xu
    Wang, Hong
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2022, 12 (01) : 145 - 162
  • [7] Exponential-sum-approximation technique for variable-order time-fractional diffusion equations
    Jia-Li Zhang
    Zhi-Wei Fang
    Hai-Wei Sun
    Journal of Applied Mathematics and Computing, 2022, 68 : 323 - 347
  • [8] A robust scheme for Caputo variable-order time-fractional diffusion-type equations
    Khadijeh Sadri
    Kamyar Hosseini
    Dumitru Baleanu
    Soheil Salahshour
    Evren Hinçal
    Journal of Thermal Analysis and Calorimetry, 2023, 148 : 5747 - 5764
  • [9] A preconditioned fast finite element approximation to variable-order time-fractional diffusion equations in multiple space dimensions
    Jia, Jinhong
    Wang, Hong
    Zheng, Xiangcheng
    APPLIED NUMERICAL MATHEMATICS, 2021, 163 : 15 - 29
  • [10] A robust scheme for Caputo variable-order time-fractional diffusion-type equations
    Sadri, Khadijeh
    Hosseini, Kamyar
    Baleanu, Dumitru
    Salahshour, Soheil
    Hincal, Evren
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2023, 148 (12) : 5747 - 5764