Key steps and methods in the experimental design and data analysis of highly multi-parametric flow and mass cytometry

被引:20
作者
Rybakowska, Paulina [1 ]
Alarcon-Riquelme, Marta E. [1 ,2 ]
Maranon, Concepcion [1 ]
机构
[1] Univ Granada, GENYO, Ctr Genom & Oncol Res Pfizer, Andalusian Reg Govt, Pts Granada, Spain
[2] Karolinska Inst, Inst Environm Med, Stockholm, Sweden
关键词
Flow cytometry; Mass cytometry; Bioinformatics; Computational tools; Single-cell proteomics; SINGLE-CELL ANALYSIS; HIGH-DIMENSIONAL ANALYSIS; AUTOMATED IDENTIFICATION; QUALITY-CONTROL; DIFFUSION MAPS; IMMUNE; REVEALS; STANDARDIZATION; NORMALIZATION; OPTIMIZATION;
D O I
10.1016/j.csbj.2020.03.024
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
High-dimensional, single-cell cell technologies revolutionized the way to study biological systems, and polychromatic flow cytometry (FC) and mass cytometry (MC) are two of the drivers of this revolution. As up to 30-50 dimensions respectively can be measured per single-cell, they allow deep phenotyping combined with cellular functions studies, like cytokine production or protein phosphorylation. In parallel, the bioinformatics field develops algorithms that are able to process incoming data and extract the most useful and meaningful biological information. However, the success of automated analysis tools depends on the generation of high-quality data. In this review we present the most recent FC and MC computational approaches that are used to prepare, process and interpret high-content cytometry data. We also underscore proper experimental design as a key step for obtaining good quality data. (C) 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
引用
收藏
页码:874 / 886
页数:13
相关论文
共 136 条
[1]   A benchmark for evaluation of algorithms for identification of cellular correlates of clinical outcomes [J].
Aghaeepour, Nima ;
Chattopadhyay, Pratip ;
Chikina, Maria ;
Dhaene, Tom ;
Van Gassen, Sofie ;
Kursa, Miron ;
Lambrecht, Bart N. ;
Malek, Mehrnoush ;
McLachlan, G. J. ;
Qian, Yu ;
Qiu, Peng ;
Saeys, Yvan ;
Stanton, Rick ;
Tong, Dong ;
Vens, Celine ;
Walkowiak, Slawomir ;
Wang, Kui ;
Finak, Greg ;
Gottardo, Raphael ;
Mosmann, Tim ;
Nolan, Garry P. ;
Scheuermann, Richard H. ;
Brinkman, Ryan R. .
CYTOMETRY PART A, 2016, 89A (01) :16-21
[2]   RchyOptimyx: Cellular hierarchy optimization for flow cytometry [J].
Aghaeepour, Nima ;
Jalali, Adrin ;
O'Neill, Kieran ;
Chattopadhyay, Pratip K. ;
Roederer, Mario ;
Hoos, Holger H. ;
Brinkman, Ryan R. .
CYTOMETRY PART A, 2012, 81A (12) :1022-1030
[3]   Early immunologic correlates of HIV protection can be identified from computational analysis of complex multivariate T-cell flow cytometry assays* [J].
Aghaeepour, Nima ;
Chattopadhyay, Pratip K. ;
Ganesan, Anuradha ;
O'Neill, Kieran ;
Zare, Habil ;
Jalali, Adrin ;
Hoos, Holger H. ;
Roederer, Mario ;
Brinkman, Ryan R. .
BIOINFORMATICS, 2012, 28 (07) :1009-1016
[4]   Development of a Comprehensive Antibody Staining Database Using a Standardized Analytics Pipeline [J].
Amir, El-ad David ;
Lee, Brian ;
Badoual, Paul ;
Gordon, Martin ;
Guo, Xinzheng, V ;
Merad, Miriam ;
Rahman, Adeeb H. .
FRONTIERS IN IMMUNOLOGY, 2019, 10
[5]   Average Overlap Frequency: A simple metric to evaluate staining quality and community identification in high dimensional mass cytometry experiments [J].
Amir, El-ad David ;
Guo, Xinzheng V. ;
Mayovska, Oksana ;
Rahman, Adeeb H. .
JOURNAL OF IMMUNOLOGICAL METHODS, 2018, 453 :20-29
[6]   viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia [J].
Amir, El-ad David ;
Davis, Kara L. ;
Tadmor, Michelle D. ;
Simonds, Erin F. ;
Levine, Jacob H. ;
Bendall, Sean C. ;
Shenfeld, Daniel K. ;
Krishnaswamy, Smita ;
Nolan, Garry P. ;
Pe'er, Dana .
NATURE BIOTECHNOLOGY, 2013, 31 (06) :545-+
[7]   destiny: diffusion maps for large-scale single cell data in R [J].
Angerer, Philipp ;
Haghverdi, Laleh ;
Buettner, Maren ;
Theis, Fabian J. ;
Marr, Carsten ;
Buettner, Florian .
BIOINFORMATICS, 2016, 32 (08) :1241-1243
[8]  
[Anonymous], **DATA OBJECT**, DOI DOI 10.18129/B9.BIOC.FLOWSTATS
[9]  
[Anonymous], 2015, BIO PROTOC
[10]  
[Anonymous], **DATA OBJECT**, DOI DOI 10.18129/B9.BIOC.FLOWWORKSPACE