Evaluating SAR-optical sensor fusion for aboveground biomass estimation in a Brazilian tropical forest

被引:28
作者
Debastiani, Aline Bernarda [1 ]
Sanquetta, Carlos Roberto [1 ]
Dalla Corte, Ana Paula [1 ]
Rex, Franciel Eduardo [1 ]
Pinto, Naiara Sardinha [1 ]
机构
[1] Univ State Parana, Ave Rio Grande do Norte 1525, BR-87701020 Paranavai, PR, Brazil
关键词
Amazon Forest; artificial intelligence; Sentinel; 1; 2; AGB; carbon; IMAGE TEXTURE; RADAR; LIDAR; SAVANNA; LAND;
D O I
10.15287/afr.2018.1267
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
The aim of the present study is to evaluate the potential of C-band SAR data from the Sentinel-1/2 instruments and machine learning algorithms for the estimation of forest above ground forest biomass (AGB) in a high-biomass tropical ecosystem. This study was carried out in Jamari National Forest, located in the Brazilian Amazon. The response variable was AGB (Mg/ha) estimated from airborne laser surveys. The following treatments were considered as model predictors: 1) Sentinel-1 Sigma 0 at VV and VH polarizations; 2) (1) plus Sentinel-1 textural metrics; 3) (2) plus Sentinel-2 bands and derived vegetation indices (LAI, RVI, SAVI, NDVI). Our modeling design estimated the relative importance of SAR vs. optical variables in explaining AGB. The modeling was performed with twelve machine-learning algorithms including, neural network and regression tree. The addition of texture and optical data provided a noticeable improvement (3%) over models with SAR backscatter only. The best model performance was achieved with the Random Tree algorithm. Our results demonstrate the potential of freely-available SAR data and machine learning for mapping AGB in tropical ecosystems.
引用
收藏
页码:109 / 122
页数:14
相关论文
共 52 条
[1]  
ALLEN RG, 2002, ADV TRAINING USERS M
[2]   Estimating forest canopy fuel parameters using LIDAR data [J].
Andersen, HE ;
McGaughey, RJ ;
Reutebuch, SE .
REMOTE SENSING OF ENVIRONMENT, 2005, 94 (04) :441-449
[3]  
[Anonymous], 2012, PROD PEC MUN
[4]  
[Anonymous], 1985, EXPLORING DATA TABLE
[5]   SAR-Based Estimation of Above-Ground Biomass and Its Changes in Tropical Forests of Kalimantan Using L- and C-Band [J].
Berninger, Anna ;
Lohberger, Sandra ;
Staengel, Matthias ;
Siegert, Florian .
REMOTE SENSING, 2018, 10 (06)
[6]   Estimating the Above-Ground Biomass in Miombo Savanna Woodlands (Mozambique, East Africa) Using L-Band Synthetic Aperture Radar Data [J].
Carreiras, Joao M. B. ;
Melo, Joana B. ;
Vasconcelos, Maria J. .
REMOTE SENSING, 2013, 5 (04) :1524-1548
[7]   Mapping forest aboveground biomass in the Northeastern United States with ALOS PALSAR dual-polarization L-band [J].
Cartus, Oliver ;
Santoro, Maurizio ;
Kellndorfer, Josef .
REMOTE SENSING OF ENVIRONMENT, 2012, 124 :466-478
[8]   Estimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery [J].
Castillo, Jose Alan A. ;
Apan, Armando A. ;
Maraseni, Tek N. ;
Salmo, Severino G., III .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2017, 134 :70-85
[9]   Error propagation and scaling for tropical forest biomass estimates [J].
Chave, J ;
Condit, R ;
Aguilar, S ;
Hernandez, A ;
Lao, S ;
Perez, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2004, 359 (1443) :409-420
[10]   Improved allometric models to estimate the aboveground biomass of tropical trees [J].
Chave, Jerome ;
Rejou-Mechain, Maxime ;
Burquez, Alberto ;
Chidumayo, Emmanuel ;
Colgan, Matthew S. ;
Delitti, Welington B. C. ;
Duque, Alvaro ;
Eid, Tron ;
Fearnside, Philip M. ;
Goodman, Rosa C. ;
Henry, Matieu ;
Martinez-Yrizar, Angelina ;
Mugasha, Wilson A. ;
Muller-Landau, Helene C. ;
Mencuccini, Maurizio ;
Nelson, Bruce W. ;
Ngomanda, Alfred ;
Nogueira, Euler M. ;
Ortiz-Malavassi, Edgar ;
Pelissier, Raphael ;
Ploton, Pierre ;
Ryan, Casey M. ;
Saldarriaga, Juan G. ;
Vieilledent, Ghislain .
GLOBAL CHANGE BIOLOGY, 2014, 20 (10) :3177-3190