Maps between curves and arithmetic obstructions

被引:4
作者
Sutherland, Andrew V. [1 ]
Voloch, Jose Felipe [2 ]
机构
[1] MIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Univ Canterbury, Sch Math & Stat, Private Bag 4800, Christchurch 8140, New Zealand
来源
ARITHMETIC GEOMETRY: COMPUTATION AND APPLICATIONS | 2019年 / 722卷
基金
美国国家科学基金会;
关键词
HASSE-WITT MATRICES; HYPERELLIPTIC CURVES; FUNCTION-FIELDS;
D O I
10.1090/conm/722/14532
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X and Y be curves over a finite field. In this article we explore methods to determine whether there is a rational map from Y to X by considering L-functions of certain covers of X and Y and propose a specific family of covers to address the special case of determining when X and Y are isomorphic. We also discuss an application to factoring polynomials over finite fields.
引用
收藏
页码:167 / 175
页数:9
相关论文
共 17 条
[1]  
Barkley Rosser J., 1962, Illinois J. Math., V6, P64
[2]  
Bosma W., 2017, HDB MAGMA FUNCTIONS
[3]  
BUIUM A, 1993, ASTERISQUE, P35
[4]   Real polynomials with all roots on the unit circle and abelian varieties over finite fields [J].
DiPippo, SA ;
Howe, EW .
JOURNAL OF NUMBER THEORY, 1998, 73 (02) :426-450
[5]   Computing Hasse-Witt matrices of hyperelliptic curves in average polynomial time, II [J].
Harvey, David ;
Sutherland, Andrew V. .
FROBENIUS DISTRIBUTIONS: LANG-TROTTER AND SATO-TATE CONJECTURES, 2016, 663 :127-147
[6]   Computing zeta functions of arithmetic schemes [J].
Harvey, David .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2015, 111 :1379-1401
[7]   Computing Hasse-Witt matrices of hyperelliptic curves in average polynomial time [J].
Harvey, David ;
Sutherland, Andrew V. .
LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2014, 17 :257-273
[8]  
Hess F, 2004, LECT NOTES COMPUT SC, V3076, P263
[9]   Constructing distinct curves with isomorphic Jacobians [J].
Howe, EW .
JOURNAL OF NUMBER THEORY, 1996, 56 (02) :381-390
[10]  
Kedlaya KS, 2008, LECT NOTES COMPUT SC, V5011, P312, DOI 10.1007/978-3-540-79456-1_21