On the blow-up of solutions to a nonlinear dispersive rod equation

被引:8
作者
Wahlen, Erik [1 ]
机构
[1] Lund Univ, Dept Math, S-22100 Lund, Sweden
关键词
convolution inequality; blow-up; nonlinear dispersive equation;
D O I
10.1016/j.jmaa.2005.11.050
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using a variational approach we prove an optimal nonlinear convolution inequality. This result is then applied to give criteria for finite-time blow-up of solutions to a nonlinear model equation in elasticity, improving considerably upon recent blow-up results. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:1318 / 1324
页数:7
相关论文
共 27 条
[1]   MODEL EQUATIONS FOR LONG WAVES IN NONLINEAR DISPERSIVE SYSTEMS [J].
BENJAMIN, TB ;
BONA, JL ;
MAHONY, JJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1972, 272 (1220) :47-+
[2]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[3]  
Constantin A, 2000, COMMUN PUR APPL MATH, V53, P603
[4]   On the cauchy problem for the periodic Camassa-Holm equation [J].
Constantin, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 141 (02) :218-235
[5]   Geodesic flow on the diffeomorphism group of the circle [J].
Constantin, A ;
Kolev, B .
COMMENTARII MATHEMATICI HELVETICI, 2003, 78 (04) :787-804
[6]  
Constantin A, 1998, COMMUN PUR APPL MATH, V51, P475, DOI 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO
[7]  
2-5
[8]   Wave breaking for nonlinear nonlocal shallow water equations [J].
Constantin, A ;
Escher, J .
ACTA MATHEMATICA, 1998, 181 (02) :229-243
[9]  
Constantin A, 1999, COMMUN PUR APPL MATH, V52, P949, DOI 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO
[10]  
2-D