Concerning continua that contain no metric subcontinua

被引:0
作者
Daniel, D [1 ]
Nikiel, J
Treybig, LB
Tuncali, M
Tymchatyn, ED
机构
[1] Lamar Univ, Dept Math, Beaumont, TX 77710 USA
[2] Amer Univ Beirut, Dept Math, Beirut, Lebanon
[3] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[4] Nipissing Univ, Fac Arts & Sci, N Bay, ON P1B 8L7, Canada
[5] Univ Saskatchewan, Dept Math, Saskatoon, SK S7N 0W0, Canada
来源
HOUSTON JOURNAL OF MATHEMATICS | 2004年 / 30卷 / 03期
关键词
locally connected continuum; ordered compactum; rim-finite;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In earlier work the authors raised the following question. Let X denote a locally connected continuum such that X is rim-metric and such that X contains no nondegenerate metric subcontinuum. Is X rim-finite and therefore the continuous image of a compact ordered space? Herein we study this question. In so doing, we obtain analogues of a classical result of Whyburn.
引用
收藏
页码:745 / 750
页数:6
相关论文
共 12 条
[1]  
Daniel D., 2001, QUESTIONS ANSWERS GE, V19, P187
[2]  
Dickman R.F., 1988, DISS MATH, VCCLXII
[3]   IMAGES OF ORDERED COMPACTA ARE LOCALLY PERIPHERALLY METRIC [J].
MARDESIC, S .
PACIFIC JOURNAL OF MATHEMATICS, 1967, 23 (03) :557-&
[4]  
MOORE RL, 1962, AM MATH SOC COLL PUB, V13
[5]   THE HAHN-MAZURKIEWICZ THEOREM FOR HEREDITARILY LOCALLY CONNECTED CONTINUA [J].
NIKIEL, J .
TOPOLOGY AND ITS APPLICATIONS, 1989, 32 (03) :307-323
[6]  
PEARSON BJ, 1975, COLLOQ MATH, V34, P39
[8]   CONCERNING CONTINUA WHICH ARE CONTINUOUS IMAGES OF COMPACT ORDERED SPACES [J].
TREYBIG, LB .
DUKE MATHEMATICAL JOURNAL, 1965, 32 (03) :417-&
[9]  
TREYBIG LB, 1964, P AM MATH SOC, V15, P866
[10]  
TREYBIG LB, 1981, TOPOLOGY ORDER STR 1, P95