An integrated space-to-ground quantum communication network over 4,600 kilometres

被引:691
作者
Chen, Yu-Ao [1 ,2 ,3 ]
Zhang, Qiang [1 ,2 ,3 ]
Chen, Teng-Yun [1 ,2 ,3 ]
Cai, Wen-Qi [1 ,2 ,3 ]
Liao, Sheng-Kai [1 ,2 ,3 ]
Zhang, Jun [1 ,2 ,3 ]
Chen, Kai [1 ,2 ,3 ]
Yin, Juan [1 ,2 ,3 ]
Ren, Ji-Gang [1 ,2 ,3 ]
Chen, Zhu [1 ,2 ,3 ]
Han, Sheng-Long [1 ,2 ,3 ]
Yu, Qing [4 ]
Liang, Ken [4 ]
Zhou, Fei [5 ]
Yuan, Xiao [1 ,2 ,3 ]
Zhao, Mei-Sheng [1 ,2 ,3 ]
Wang, Tian-Yin [1 ,2 ,3 ]
Jiang, Xiao [1 ,2 ,3 ]
Zhang, Liang [2 ,3 ,6 ]
Liu, Wei-Yue [1 ,2 ,3 ]
Li, Yang [1 ,2 ,3 ]
Shen, Qi [1 ,2 ,3 ]
Cao, Yuan [1 ,2 ,3 ]
Lu, Chao-Yang [1 ,2 ,3 ]
Shu, Rong [3 ,6 ]
Wang, Jian-Yu [3 ,6 ]
Li, Li [1 ,2 ,3 ]
Liu, Nai-Le [1 ,2 ,3 ]
Xu, Feihu [1 ,2 ,3 ]
Wang, Xiang-Bin [4 ,5 ]
Peng, Cheng-Zhi [1 ,2 ,3 ]
Pan, Jian-Wei [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei, Anhui, Peoples R China
[2] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China
[3] Univ Sci & Technol China, CAS Ctr Excellence Ctr Quantum Informat & Quantum, Shanghai Branch, Shanghai, Peoples R China
[4] China Cable Network Co, Beijing, Peoples R China
[5] Jinan Inst Quantum Technol, Jinan, Shandong, Peoples R China
[6] CAS Shanghai Inst Tech Phys, Key Lab Space Act Optoelect Technol, Shanghai, Peoples R China
基金
国家重点研发计划;
关键词
KEY DISTRIBUTION; FIELD-TEST; PROOF;
D O I
10.1038/s41586-020-03093-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum key distribution (QKD)(1,2) has the potential to enable secure communication and information transfer(3). In the laboratory, the feasibility of point-to-point QKD is evident from the early proof-of-concept demonstration in the laboratory over 32 centimetres(4); this distance was later extended to the 100-kilometre scale(5,6) with decoy-state QKD and more recently to the 500-kilometre scale(7-10) with measurement-device-independent QKD. Several small-scale QKD networks have also been tested outside the laboratory(11-14). However, a global QKD network requires a practically (not just theoretically) secure and reliable QKD network that can be used by a large number of users distributed over a wide area(15). Quantum repeaters(16,17) could in principle provide a viable option for such a global network, but they cannot be deployed using current technology(18). Here we demonstrate an integrated space-to-ground quantum communication network that combines a large-scale fibre network of more than 700 fibre QKD links and two high-speed satellite-to-ground free-space QKD links. Using a trusted relay structure, the fibre network on the ground covers more than 2,000 kilometres, provides practical security against the imperfections of realistic devices, and maintains long-term reliability and stability. The satellite-to-ground QKD achieves an average secret-key rate of 47.8 kilobits per second for a typical satellite pass-more than 40 times higher than achieved previously. Moreover, its channel loss is comparable to that between a geostationary satellite and the ground, making the construction of more versatile and ultralong quantum links via geosynchronous satellites feasible. Finally, by integrating the fibre and free-space QKD links, the QKD network is extended to a remote node more than 2,600 kilometres away, enabling any user in the network to communicate with any other, up to a total distance of 4,600 kilometres.
引用
收藏
页码:214 / +
页数:19
相关论文
共 64 条
[1]  
[Anonymous], 1984, P IEEE INT C COMP SY, DOI DOI 10.1016/J.TCS.2014.05.025
[2]   Memory Attacks on Device-Independent Quantum Cryptography [J].
Barrett, Jonathan ;
Colbeck, Roger ;
Kent, Adrian .
PHYSICAL REVIEW LETTERS, 2013, 110 (01)
[3]  
Bennett C. H., 1992, Journal of Cryptology, V5, P3, DOI 10.1007/BF00191318
[4]   Secure Quantum Key Distribution over 421 km of Optical Fiber [J].
Boaron, Alberto ;
Boso, Gianluca ;
Rusca, Davide ;
Vulliez, Cedric ;
Autebert, Claire ;
Caloz, Misael ;
Perrenoud, Matthieu ;
Gras, Gaetan ;
Bussieres, Felix ;
Li, Ming-Jun ;
Nolan, Daniel ;
Martin, Anthony ;
Zbinden, Hugo .
PHYSICAL REVIEW LETTERS, 2018, 121 (19)
[5]   Limitations on practical quantum cryptography [J].
Brassard, G ;
Lütkenhaus, N ;
Mor, T ;
Sanders, BC .
PHYSICAL REVIEW LETTERS, 2000, 85 (06) :1330-1333
[6]   Quantum repeaters:: The role of imperfect local operations in quantum communication [J].
Briegel, HJ ;
Dür, W ;
Cirac, JI ;
Zoller, P .
PHYSICAL REVIEW LETTERS, 1998, 81 (26) :5932-5935
[7]   Remote timing attacks are practical [J].
Brumley, D ;
Boneh, D .
COMPUTER NETWORKS, 2005, 48 (05) :701-716
[8]   Sending-or-Not-Sending with Independent Lasers: Secure Twin-Field Quantum Key Distribution over 509 km [J].
Chen, Jiu-Peng ;
Zhang, Chi ;
Liu, Yang ;
Jiang, Cong ;
Zhang, Weijun ;
Hu, Xiao-Long ;
Guan, Jian-Yu ;
Yu, Zong-Wen ;
Xu, Hai ;
Lin, Jin ;
Li, Ming-Jun ;
Chen, Hao ;
Li, Hao ;
You, Lixing ;
Wang, Zhen ;
Wang, Xiang-Bin ;
Zhang, Qiang ;
Pan, Jian-Wei .
PHYSICAL REVIEW LETTERS, 2020, 124 (07)
[9]   Field test of a practical secure communication network with decoy-state quantum cryptography [J].
Chen, Teng-Yun ;
Liang, Hao ;
Liu, Yang ;
Cai, Wen-Qi ;
Ju, Lei ;
Liu, Wei-Yue ;
Wang, Jian ;
Yin, Hao ;
Chen, Kai ;
Chen, Zeng-Bing ;
Peng, Cheng-Zhi ;
Pan, Jian-Wei .
OPTICS EXPRESS, 2009, 17 (08) :6540-6549
[10]   Large-area fiber-optic gyroscope on a multiplexed fiber network [J].
Clivati, C. ;
Calonico, D. ;
Costanzo, G. A. ;
Mura, A. ;
Pizzocaro, M. ;
Levi, F. .
OPTICS LETTERS, 2013, 38 (07) :1092-1094