acceleration of particles;
solar wind;
Sun: corona;
Sun: flares;
PARTICLE-ACCELERATION;
STOCHASTIC ACCELERATION;
ELECTRON ACCELERATION;
ORIGIN;
D O I:
10.1088/0004-637X/700/1/L16
中图分类号:
P1 [天文学];
学科分类号:
0704 ;
摘要:
The acceleration of ions during magnetic reconnection in solar flares is explored with simulations and analytic analysis. Ions crossing into Alfvenic reconnection outflows can behave like pickup particles and gain an effective thermal velocity equal to the Alfven speed. However, with a sufficiently strong ambient out-of-plane magnetic field, which is the relevant configuration for flares, the ions can become adiabatic and their heating is then dramatically reduced. The threshold for nonadiabatic behavior, where ions are strongly heated, becomes a condition on the ion mass-to-charge ratio, m(i)/m(p)Z(i) > 10 root beta(0x)/2/pi, where m(i) and Z(i) are the ion mass and charge state, m(p) is the proton mass, and beta(0x) = 8 pi nT/B-0x(2) is the ratio of the plasma pressure to that of the reconnecting magnetic field B-0x. Thus, during flares high mass-to-charge particles gain energy more easily than protons and a simple model reveals that their abundances are enhanced, which is consistent with observations.