In Situ Probing of Laser Annealing of Plasmonic Substrates with Surface-Enhanced Raman Spectroscopy

被引:7
作者
Ma, Chaoxiong [1 ]
Fu, Kaiyu [1 ]
Trujillo, Michael J. [1 ]
Gu, Xin [1 ]
Baig, Nameera [1 ]
Bohn, Paul W. [1 ,2 ]
Camden, Jon P. [1 ]
机构
[1] Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA
[2] Univ Notre Dame, Dept Chem & Biomol Engn, Notre Dame, IN 46556 USA
基金
美国国家科学基金会;
关键词
GOLD NANOPARTICLES; SCATTERING; SILVER; SERS; NANOSTRUCTURES; ARRAYS; FILMS; AU; DEVICES; SCALE;
D O I
10.1021/acs.jpcc.8b01443
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, we in situ monitor the laser annealing of template-fabricated silver substrates using surface-enhanced Raman scattering (SERS) and 4-mercaptobenzoic acid (4-MBA) as a molecular probe. The annealing process, which exhibits a strong dependence on the laser power, yields a large (>50X) increase in the SERS of the immobilized 4-MBA. This increased SERS response is correlated with the changing substrate morphology using optical and scanning electron microscope images. We attribute the large enhancement to the formation of nanogaps facilitated by binding of the 4-MBA through both thiol and COO- groups in a sandwich structure, resulting in both electromagnetic and chemical enhancement. This annealing effect, associated with the continuous increase of SERS intensity, was not limited to the AgNP arrays but included Ag films deposited on a variety of nanoporous templates. This study provides a simple strategy for in situ optimization of j plasmonic SERS substrates.
引用
收藏
页码:11031 / 11037
页数:7
相关论文
共 52 条
[1]   Biosensing with plasmonic nanosensors [J].
Anker, Jeffrey N. ;
Hall, W. Paige ;
Lyandres, Olga ;
Shah, Nilam C. ;
Zhao, Jing ;
Van Duyne, Richard P. .
NATURE MATERIALS, 2008, 7 (06) :442-453
[2]   Laser rapid thermal annealing enables tunable plasmonics in nanoporous gold nanoparticles [J].
Arnob, Md Masud Parvez ;
Zhao, Fusheng ;
Zeng, Jianbo ;
Santos, Greggy M. ;
Li, Ming ;
Shih, Wei-Chuan .
NANOSCALE, 2014, 6 (21) :12470-12475
[3]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]
[4]   Nanoporous plasmonic metamaterials [J].
Biener, Juergen ;
Nyce, Gregory W. ;
Hodge, Andrea M. ;
Biener, Monika M. ;
Hamza, Alex V. ;
Maier, Stefan A. .
ADVANCED MATERIALS, 2008, 20 (06) :1211-1217
[5]   Plasmonic materials for energy: From physics to applications [J].
Boriskina, Svetlana V. ;
Ghasemi, Hadi ;
Chen, Gang .
MATERIALS TODAY, 2013, 16 (10) :375-386
[6]   Plasmonics for future biosensors [J].
Brolo, Alexandre G. .
NATURE PHOTONICS, 2012, 6 (11) :709-713
[7]   Probing the Ultimate Limits of Plasmonic Enhancement [J].
Ciraci, C. ;
Hill, R. T. ;
Mock, J. J. ;
Urzhumov, Y. ;
Fernandez-Dominguez, A. I. ;
Maier, S. A. ;
Pendry, J. B. ;
Chilkoti, A. ;
Smith, D. R. .
SCIENCE, 2012, 337 (6098) :1072-1074
[8]   Gold Nanoparticle Self-Similar Chain Structure Organized by DNA Origami [J].
Ding, Baoquan ;
Deng, Zhengtao ;
Yan, Hao ;
Cabrini, Stefano ;
Zuckermann, Ronald N. ;
Bokor, Jeffrey .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (10) :3248-+
[9]   Electrochemistry at single molecule occupancy in nanopore-confined recessed ring-disk electrode arrays [J].
Fu, Kaiyu ;
Han, Donghoon ;
Ma, Chaoxiong ;
Bohn, Paul W. .
FARADAY DISCUSSIONS, 2016, 193 :51-64
[10]   Surface-enhanced Raman scattering from Ag nanoparticles formed by visible laser irradiation of thermally annealed AgOx thin films [J].
Fujimaki, Makoto ;
Awazu, Koichi ;
Tominaga, Junji .
JOURNAL OF APPLIED PHYSICS, 2006, 100 (07)