Effects of Physical and Chemical Treatments on the Molecular Weight and Degradation of Alginate-Hydroxyapatite Composites

被引:16
作者
Cardoso, Daniel Alves [1 ,2 ]
Ulset, Ann-Sissel [3 ]
Bender, Johan [4 ]
Jansen, John A. [1 ]
Christensen, Bjorn E. [3 ]
Leeuwenburgh, Sander C. G. [1 ]
机构
[1] Radboud Univ Nijmegen, Med Ctr, Dept Biomat, NL-6500 HB Nijmegen, Netherlands
[2] EMCM BV, NL-6545 CH Nijmegen, Netherlands
[3] NTNU Norwegian Univ Sci & Technol, Dept Biotechnol, NOBIPOL, N-7491 Trondheim, Norway
[4] Bender Analyt Holding BV, NL-3581 XE Utrecht, Netherlands
关键词
biomaterials; composites; degradation; hydrogels; radiation; GAMMA-IRRADIATION; CHAIN STIFFNESS; HYDROGELS; TISSUE; DEPOLYMERIZATION;
D O I
10.1002/mabi.201300415
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Degradation of alginate remains a critical issue to allow predictable biological performance upon implantation of alginate-based materials. Therefore, the objective of the current study is to compare the effects of g-irradiation (dry state, 20-80 kGy), partial (1 and 4%) periodate oxidation (aqueous solution), and autoclaving (dry state) on the molecular weight of alginate, as well as the degradation behavior of alginate-based composites. The results show that g-irradiation is by far the most destructive technique characterized by strongly reduced molecular weights and rapid loss of composite integrity upon soaking in simulated body fluid. Partial periodate oxidation is less destructive as characterized by more moderate decreases in molecular weight, but the production of hydrolytically labile bonds compromises the integrity of the resulting composites. Autoclaving is shown to be a powerful tool to reduce the molecular weight of alginate in a controllable and mild manner without compromising the integrity of the resulting alginate-hydroxyapatite composites, simply by increasing the number of repetitive autoclaving cycles.
引用
收藏
页码:872 / 880
页数:9
相关论文
共 28 条
[1]   Regulating bone formation via controlled scaffold degradation [J].
Alsberg, E ;
Kong, HJ ;
Hirano, Y ;
Smith, MK ;
Albeiruti, A ;
Mooney, DJ .
JOURNAL OF DENTAL RESEARCH, 2003, 82 (11) :903-908
[2]   RADIOIODINATION OF ALGINATE VIA COVALENTLY-BOUND TYROSINAMIDE ALLOWS MONITORING OF ITS FATE IN-VIVO [J].
ALSHAMKHANI, A ;
DUNCAN, R .
JOURNAL OF BIOACTIVE AND COMPATIBLE POLYMERS, 1995, 10 (01) :4-13
[3]  
Andersen T, 2011, SPR CARB CH, V37, P227, DOI 10.1039/9781849732765-00227
[4]   Alginate hydrogels as biomaterials [J].
Augst, Alexander D. ;
Kong, Hyun Joon ;
Mooney, David J. .
MACROMOLECULAR BIOSCIENCE, 2006, 6 (08) :623-633
[5]  
Bender J., 2010, Ned, Patent No. 2010711941
[6]   Development of bone substitute materials: from 'biocompatible' to 'instructive' [J].
Bongio, Matilde ;
van den Beucken, Jeroen J. J. P. ;
Leeuwenburgh, Sander C. G. ;
Jansen, John A. .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (40) :8747-8759
[7]   Degradation of partially oxidized alginate and its potential application for tissue engineering [J].
Bouhadir, KH ;
Lee, KY ;
Alsberg, E ;
Damm, KL ;
Anderson, KW ;
Mooney, DJ .
BIOTECHNOLOGY PROGRESS, 2001, 17 (05) :945-950
[8]   Injectable calcium phosphate cement: Effects of powder-to-liquid ratio and needle size [J].
Burguera, Elena F. ;
Xu, Hockin H. K. ;
Sun, Limin .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2008, 84B (02) :493-502
[9]   Gelation and biocompatibility of injectable alginate-calcium phosphate gels for bone regeneration [J].
Cardoso, D. Alves ;
van den Beucken, J. J. J. P. ;
Both, L. L. H. ;
Bender, J. ;
Jansen, J. A. ;
Leeuwenburgh, S. C. G. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2014, 102 (03) :808-817
[10]   Synthesis and application of nanostructured calcium phosphate ceramics for bone regeneration [J].
Cardoso, D. Alves ;
Jansen, J. A. ;
Leeuwenburgh, S. C. G. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2012, 100B (08) :2316-2326