Organo-metal perovskite based solar cells: sensitized versus planar architecture

被引:53
作者
Gamliel, Shany [1 ]
Etgar, Lioz [1 ]
机构
[1] Hebrew Univ Jerusalem, Inst Chem, Casali Ctr Appl Chem, IL-91905 Jerusalem, Israel
关键词
EFFICIENT; TRANSPORT; ELECTRON; IODIDE; TRIHALIDE;
D O I
10.1039/c4ra03981e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Organo-metal halide perovskites are composed of an ABX3 structure in which A represents a cation, B a divalent metal cation and X a halide. The organo-metal perovskite shows very good potential to be used as a light harvester in solar cells due to its direct band gap, large absorption coefficient, high carrier mobility and good stability. However, there is an important question in the photovoltaic field regarding the most advantageous architecture for perovskite based solar cells. Several studies showed sensitized perovskite solar cells achieving high performance, while high efficiency was also observed with the planar architecture. Consequently, it is still an open question regarding which operation mechanism and which architecture offers better results. This review describes both architectures, based on studies in the field. In the case of the sensitized structure, there are more difficulties in pore filling, naturally more recombination, and the possibility to use thicker metal oxide films. In the planar structure, thin metal oxide films are used, less recombination was observed and there are no infiltration problems. Both architectures exhibit long-range diffusion length and meet the demand for excellent coverage of the perovskite film.
引用
收藏
页码:29012 / 29021
页数:10
相关论文
共 41 条
[1]   High-Performance Perovskite-Polymer Hybrid Solar Cells via Electronic Coupling with Fullerene Monolayers [J].
Abrusci, Agnese ;
Stranks, Samuel D. ;
Docampo, Pablo ;
Yip, Hin-Lap ;
Jen, Alex K-Y. ;
Snaith, Henry J. .
NANO LETTERS, 2013, 13 (07) :3124-3128
[2]   Depleted hole conductor-free lead halide iodide heterojunction solar cells [J].
Abu Laban, Waleed ;
Etgar, Lioz .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (11) :3249-3253
[3]   Hybrid Lead Halide Iodide and Lead Halide Bromide in Efficient Hole Conductor Free Perovskite Solar Cell [J].
Aharon, Sigalit ;
El Cohen, Bat ;
Etgar, Lioz .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (30) :17160-17165
[4]   Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells [J].
Aharon, Sigalit ;
Gamliel, Shany ;
El Cohen, Bat ;
Etgar, Lioz .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (22) :10512-10518
[5]   The perovskite structure - a review of its role in ceramic science and technology [J].
Bhalla, AS ;
Guo, RY ;
Roy, R .
MATERIALS RESEARCH INNOVATIONS, 2000, 4 (01) :3-26
[6]   Sequential deposition as a route to high-performance perovskite-sensitized solar cells [J].
Burschka, Julian ;
Pellet, Norman ;
Moon, Soo-Jin ;
Humphry-Baker, Robin ;
Gao, Peng ;
Nazeeruddin, Mohammad K. ;
Graetzel, Michael .
NATURE, 2013, 499 (7458) :316-+
[7]   High performance hybrid solar cells sensitized by organolead halide perovskites [J].
Cai, Bing ;
Xing, Yedi ;
Yang, Zhou ;
Zhang, Wen-Hua ;
Qiu, Jieshan .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (05) :1480-1485
[8]   Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process [J].
Chen, Qi ;
Zhou, Huanping ;
Hong, Ziruo ;
Luo, Song ;
Duan, Hsin-Sheng ;
Wang, Hsin-Hua ;
Liu, Yongsheng ;
Li, Gang ;
Yang, Yang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (02) :622-625
[9]   Structure of Methylammonium Lead Iodide Within Mesoporous Titanium Dioxide: Active Material in High-Performance Perovskite Solar Cells [J].
Choi, Joshua J. ;
Yang, Xiaohao ;
Norman, Zachariah M. ;
Billinge, Simon J. L. ;
Owen, Jonathan S. .
NANO LETTERS, 2014, 14 (01) :127-133
[10]   Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates [J].
Docampo, Pablo ;
Ball, James M. ;
Darwich, Mariam ;
Eperon, Giles E. ;
Snaith, Henry J. .
NATURE COMMUNICATIONS, 2013, 4