Predicting Molecular Models: Where Are We Going?

被引:0
|
作者
Ratta, Raffaele [1 ]
Verzoni, Elena [1 ]
Grassi, Paolo [1 ]
Niger, Monica [1 ]
Procopio, Giuseppe [1 ]
机构
[1] Fdn IRSCC Ist Nazl Tumori, Med Oncol 1, Genitourinary Unit, I-20133 Milan, Italy
来源
EBIOMEDICINE | 2015年 / 2卷 / 11期
关键词
RENAL-CELL CARCINOMA;
D O I
10.1016/j.ebiom.2015.09.050
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
引用
收藏
页码:1594 / 1595
页数:2
相关论文
共 39 条
  • [31] Machine learning models for predicting the onset of chronic kidney disease after surgery in patients with renal cell carcinoma
    Oh, Seol Whan
    Byun, Seok-Soo
    Kim, Jung Kwon
    Jeong, Chang Wook
    Kwak, Cheol
    Hwang, Eu Chang
    Kang, Seok Ho
    Chung, Jinsoo
    Kim, Yong-June
    Ha, Yun-Sok
    Hong, Sung-Hoo
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2024, 24 (01)
  • [32] Formation of translational risk score based on correlation coefficients as an alternative to Cox regression models for predicting outcome in patients with NSCLC
    Koessler, Wolfgang
    Fiebeler, Anette
    Willms, Arnulf
    ElAidi, Tina
    Klosterhalfen, Bernd
    Klinge, Uwe
    THEORETICAL BIOLOGY AND MEDICAL MODELLING, 2011, 8
  • [33] Models of Renal Cell Carcinoma Used to Investigate Molecular Mechanisms and Develop New Therapeutics
    Shapiro, Daniel D.
    Virumbrales-Munoz, Maria
    Beebe, David J.
    Abel, E. Jason
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [34] Validation of the MSKCC and Heng Risk Criteria Models for Predicting Survival in Patients with Metastatic Renal Cell Carcinoma Treated with Sunitinib
    Whi-An Kwon
    In-Chang Cho
    Ami Yu
    Byung-Ho Nam
    Jae Young Joung
    Ho Kyung Seo
    Kang Hyun Lee
    Jinsoo Chung
    Annals of Surgical Oncology, 2013, 20 : 4397 - 4404
  • [35] Predicting common solid renal tumors using machine learning models of classification of radiologist-assessed magnetic resonance characteristics
    Camila Lopes Vendrami
    Robert J. McCarthy
    Carolina Parada Villavicencio
    Frank H. Miller
    Abdominal Radiology, 2020, 45 : 2797 - 2809
  • [36] Predicting common solid renal tumors using machine learning models of classification of radiologist-assessed magnetic resonance characteristics
    Vendrami, Camila Lopes
    McCarthy, Robert J.
    Villavicencio, Carolina Parada
    Miller, Frank H.
    ABDOMINAL RADIOLOGY, 2020, 45 (09) : 2797 - 2809
  • [37] A Molecular Model for Predicting Overall Survival in Patients with Metastatic Clear Cell Renal Carcinoma: Results from CALGB 90206 (Alliance)
    Kim, Hyung L.
    Halabi, Susan
    Li, Ping
    Mayhew, Greg
    Simko, Jeff
    Nixon, Andrew B.
    Small, Eric J.
    Rini, Brian
    Morris, Michael J.
    Taplin, Mary-Ellen
    George, Daniel
    EBIOMEDICINE, 2015, 2 (11): : 1814 - 1820
  • [38] Can Molecular Classifications Help Tailor First-line Treatment of Metastatic Renal Cell Carcinoma? A Systematic Review of Available Models
    Ouzaid, Idir
    Rioux-Leclercq, Nathalie
    Khene, Zine-Eddine
    Bensalah, Karim
    Kammerer-Jacquet, Solene-Florence
    EUROPEAN UROLOGY OPEN SCIENCE, 2023, 47 : 12 - 19
  • [39] Nephrometry Scores Based on Three-dimensional Virtual Models Improve the Accuracy of Predicting Postoperative Complications After Robotic Partial Nephrectomy: Results from a Collaborative ERUS Validation Study
    Amparore, Daniele
    Piramide, Federico
    Verri, Paolo
    Checcucci, Enrico
    Piana, Alberto
    Basile, Giuseppe
    Larcher, Alessandro
    Gallioli, Andrea
    Territo, Angelo
    Gaya, Josep Maria
    Piazza, Pietro
    Puliatti, Stefano
    Grosso, Antonio Andrea
    Mari, Andrea
    Campi, Riccardo
    Zuluaga, Laura
    Burak, Ucpinar
    Ketan, Badani
    Serni, Sergio
    Capitanio, Umberto
    Montorsi, Francesco
    Mottrie, Alexandre
    Fiori, Cristian
    Minervini, Andrea
    Wiklund, Peter
    Breda, Alberto
    Porpiglia, Francesco
    EUROPEAN UROLOGY OPEN SCIENCE, 2025, 74 : 11 - 20