Decoupling of the antiferromagnetic and insulating states in Tb-doped Sr2IrO4

被引:41
作者
Wang, J. C. [1 ,2 ,3 ,4 ]
Aswartham, S. [1 ,2 ]
Ye, Feng [1 ,2 ,3 ]
Terzic, J. [1 ,2 ]
Zheng, H. [1 ,2 ]
Haskel, Daniel [5 ]
Chikara, Shalinee [6 ]
Choi, Yong [5 ]
Schlottmann, P. [7 ]
Custelcean, Radu [8 ]
Yuan, S. J. [1 ,2 ]
Cao, G. [1 ,2 ]
机构
[1] Univ Kentucky, Ctr Adv Mat, Lexington, KY 40506 USA
[2] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA
[3] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA
[4] Renmin Univ China, Dept Phys, Beijing, Peoples R China
[5] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA
[6] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA
[7] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA
[8] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA
基金
美国国家科学基金会;
关键词
TRANSITION;
D O I
10.1103/PhysRevB.92.214411
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Sr2IrO4 is a spin-orbit-coupled insulator with an antiferromagnetic (AFM) transition at T-N = 240 K. We report results of a comprehensive study of single-crystal Sr2Ir1-xTbxO4 (0 <= x <= 0.03). This study found that a mere 3% (x = 0.03) of tetravalent Tb4+ (4f(7)) substituting for Ir4+ (rather than Sr2+) completely suppresses the long-range collinear AFM transition but retains the insulating state, leading to a phase diagram featuring a decoupling of the magnetic interactions and charge gap. The insulating state at x = 0.03 is characterized by an unusually large specific heat at low temperatures and an incommensurate magnetic state having magnetic peaks at (0.95,0,0) and (0,0.95,0) in the neutron diffraction, suggesting a spiral or spin-density-wave order. It is apparent that Tb doping effectively changes the relative strength of the spin-orbit interaction (SOI) and the tetragonal crystal electric field and enhances the Hund's rule coupling that competes with the SOI, and destabilizes the AFM state. However, the disappearance of the AFM is accompanied by no metallic state chiefly because an energy level mismatch for the Ir and Tb sites weakens charge carrier hopping and causes a persistent insulating state. This work highlights an unconventional correlation between the AFM and insulating states in which the magnetic transition plays no critical role in the formation of the charge gap in the iridate.
引用
收藏
页数:9
相关论文
共 43 条
[1]  
[Anonymous], 1990, Metal-Insulator Transitions
[2]   Anomalous magnetic and transport behavior in the magnetic insulator Sr3Ir2O7 -: art. no. 214412 [J].
Cao, G ;
Xin, Y ;
Alexander, CS ;
Crow, JE ;
Schlottmann, P ;
Crawford, MK ;
Harlow, RL ;
Marshall, W .
PHYSICAL REVIEW B, 2002, 66 (21) :1-7
[3]  
Cao G, 2013, FRONTIERS OF 4D- AND 5D- TRANSITION METAL OXIDES, P269
[4]   Charge density wave formation accompanying ferromagnetic ordering in quasi-one-dimensional BaIrO3 [J].
Cao, G ;
Crow, JE ;
Guertin, RP ;
Henning, PF ;
Homes, CC ;
Strongin, M ;
Basov, DN ;
Lochner, E .
SOLID STATE COMMUNICATIONS, 2000, 113 (11) :657-662
[5]   Weak ferromagnetism, metal-to-nonmetal transition, and negative differential resistivity in single-crystal Sr2IrO4 [J].
Cao, G ;
Bolivar, J ;
McCall, S ;
Crow, JE ;
Guertin, RP .
PHYSICAL REVIEW B, 1998, 57 (18) :R11039-R11042
[6]   MECHANISM FOR THE METAL-INSULATOR-TRANSITION IN SR2IR1-XRUXO4 [J].
CARTER, SA ;
BATLOGG, B ;
CAVA, RJ ;
KRAJEWSKI, JJ ;
PECK, WF ;
RUPP, LW .
PHYSICAL REVIEW B, 1995, 51 (23) :17184-17187
[7]   LOCALIZED-TO-ITINERANT ELECTRON TRANSITION IN SR2IR1-XRUXO4 [J].
CAVA, RJ ;
BATLOGG, B ;
KIYONO, K ;
TAKAGI, H ;
KRAJEWSKI, JJ ;
PECK, WF ;
RUPP, LW ;
CHEN, CH .
PHYSICAL REVIEW B, 1994, 49 (17) :11890-11896
[8]   Giant magnetoelectric effect in the Jeff=1/2 Mott insulator Sr2IrO4 [J].
Chikara, S. ;
Korneta, O. ;
Crummett, W. P. ;
DeLong, L. E. ;
Schlottmann, P. ;
Cao, G. .
PHYSICAL REVIEW B, 2009, 80 (14)
[9]  
Cox P. A., 1995, TRANSITION METAL OXI, P198
[10]   STRUCTURAL AND MAGNETIC STUDIES OF SR2IRO4 [J].
CRAWFORD, MK ;
SUBRAMANIAN, MA ;
HARLOW, RL ;
FERNANDEZBACA, JA ;
WANG, ZR ;
JOHNSTON, DC .
PHYSICAL REVIEW B, 1994, 49 (13) :9198-9201