Pre-analytical processing of plasma and serum samples for combined proteome and metabolome analysis

被引:17
作者
Gegner, Hagen M. [1 ]
Naake, Thomas [2 ]
Dugourd, Aurelien [3 ,4 ]
Mueller, Torsten [5 ,6 ]
Czernilofsky, Felix [7 ]
Kliewer, Georg [5 ,6 ]
Jaeger, Evelyn [8 ]
Helm, Barbara [9 ]
Kunze-Rohrbach, Nina [1 ]
Klingmueller, Ursula [9 ]
Hopf, Carsten [8 ]
Mueller-Tidow, Carsten [7 ]
Dietrich, Sascha [7 ]
Saez-Rodriguez, Julio [3 ,4 ]
Huber, Wolfgang [2 ]
Hell, Rudiger [1 ]
Poschet, Gernot [1 ]
Krijgsveld, Jeroen [5 ,6 ]
机构
[1] Heidelberg Univ, Ctr Organismal Studies COS, Metabol Core Technol Platform, Heidelberg, Germany
[2] European Mol Biol Lab EMBL, Genome Biol Unit, Heidelberg, Germany
[3] Heidelberg Univ, Bioquant, Fac Med, Inst Computat Biomed, Heidelberg, Germany
[4] Heidelberg Univ Hosp, Heidelberg, Germany
[5] Heidelberg Univ, Fac Med, Heidelberg, Germany
[6] German Canc Res Ctr, Div Prote Stem Cells & Canc, Heidelberg, Germany
[7] Heidelberg Univ, Dept Med 5, Hematol Oncol & Rheumatol, Heidelberg, Germany
[8] Mannheim Univ Appl Sci, Ctr Mass Spectrometry & Opt Spect CeMOS, Mannheim, Germany
[9] German Canc Res Ctr, Div Syst Biol Signal Transduct, Heidelberg, Germany
关键词
proteomics; metabolomics; plasma; sample preparation; biomarker; BLOOD;
D O I
10.3389/fmolb.2022.961448
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Metabolomic and proteomic analyses of human plasma and serum samples harbor the power to advance our understanding of disease biology. Pre-analytical factors may contribute to variability and bias in the detection of analytes, especially when multiple labs are involved, caused by sample handling, processing time, and differing operating procedures. To better understand the impact of pre-analytical factors that are relevant to implementing a unified proteomic and metabolomic approach in a clinical setting, we assessed the influence of temperature, sitting times, and centrifugation speed on the plasma and serum metabolomes and proteomes from six healthy volunteers. We used targeted metabolic profiling (497 metabolites) and data-independent acquisition (DIA) proteomics (572 proteins) on the same samples generated with well-defined pre-analytical conditions to evaluate criteria for pre-analytical SOPs for plasma and serum samples. Time and temperature showed the strongest influence on the integrity of plasma and serum proteome and metabolome. While rapid handling and low temperatures (4?) are imperative for metabolic profiling, the analyzed proteomics data set showed variability when exposed to temperatures of 4? for more than 2 h, highlighting the need for compromises in a combined analysis. We formalized a quality control scoring system to objectively rate sample stability and tested this score using external data sets from other pre-analytical studies. Stringent and harmonized standard operating procedures (SOPs) are required for pre-analytical sample handling when combining proteomics and metabolomics of clinical samples to yield robust and interpretable data on a longitudinal scale and across different clinics. To ensure an adequate level of practicability in a clinical routine for metabolomics and proteomics studies, we suggest keeping blood samples up to 2 h on ice (4?) prior to snap-freezing as a compromise between stability and operability. Finally, we provide the methodology as an open-source R package allowing the systematic scoring of proteomics and metabolomics data sets to assess the stability of plasma and serum samples.
引用
收藏
页数:13
相关论文
共 21 条
[1]   Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets [J].
Argelaguet, Ricard ;
Velten, Britta ;
Arnol, Damien ;
Dietrich, Sascha ;
Zenz, Thorsten ;
Marioni, John C. ;
Buettner, Florian ;
Huber, Wolfgang ;
Stegle, Oliver .
MOLECULAR SYSTEMS BIOLOGY, 2018, 14 (06)
[2]   An Integrated Analysis of Metabolites, Peptides, and Inflammation Biomarkers for Assessment of Preanalytical Variability of Human Plasma [J].
Cao, Zhijun ;
Kamlage, Beate ;
Wagner-Golbs, Antje ;
Maisha, Mackean ;
Sun, Jinchun ;
Schnackenberg, Laura K. ;
Pence, Lisa ;
Schmitt, Thomas C. ;
Daniels, Jaclyn R. ;
Rogstad, Sarah ;
Beger, Richard D. ;
Yu, Li-Rong .
JOURNAL OF PROTEOME RESEARCH, 2019, 18 (06) :2411-2421
[3]   Stability of the Human Plasma Proteome to Pre-analytical Variability as Assessed by an Aptamer-Based Approach [J].
Daniels, Jaclyn R. ;
Cao, Zhijun ;
Maisha, Mackean ;
Schnackenberg, Laura K. ;
Sun, Jinchun ;
Pence, Lisa ;
Schmitt, Thomas C. ;
Kamlage, Beate ;
Rogstad, Sarah ;
Beger, Richard D. ;
Yu, Li-Rong .
JOURNAL OF PROTEOME RESEARCH, 2019, 18 (10) :3661-3670
[4]   The Effect of Pre-Analytical Conditions on Blood Metabolomics in Epidemiological Studies [J].
Ferreira, Diana L. Santos ;
Maple, Hannah J. ;
Goodwin, Matt ;
Brand, Judith S. ;
Yip, Vikki ;
Min, Josine L. ;
Groom, Alix ;
Lawlor, Debbie A. ;
Ring, Susan .
METABOLITES, 2019, 9 (04)
[5]   Longitudinal proteomic analysis of severe COVID-19 reveals survival-associated signatures, tissue-specific cell death, and cell-cell interactions [J].
Filbin, Michael R. ;
Mehta, Arnav ;
Schneider, Alexis M. ;
Kays, Kyle R. ;
Guess, Jamey R. ;
Gentili, Matteo ;
Fenyves, Bank G. ;
Charland, Nicole C. ;
Gonye, Anna L. K. ;
Gushterova, Irena ;
Khanna, Hargun K. ;
LaSalle, Thomas J. ;
Lavin-Parsons, Kendall M. ;
Lilley, Brendan M. ;
Lodenstein, Carl L. ;
Manakongtreecheep, Kasidet ;
Margolin, Justin D. ;
McKaig, Brenna N. ;
Rojas-Lopez, Maricarmen ;
Russo, Brian C. ;
Sharma, Nihaarika ;
Tantivit, Jessica ;
Thomas, Molly F. ;
Gerszten, Robert E. ;
Heimberg, Graham S. ;
Hoover, Paul J. ;
Lieb, David J. ;
Lin, Brian ;
Ngo, Debby ;
Pelka, Karin ;
Reyes, Miguel ;
Smillie, Christopher S. ;
Waghray, Avinash ;
Wood, Thomas E. ;
Zajac, Amanda S. ;
Jennings, Lori L. ;
Grundberg, Ida ;
Bhattacharyya, Roby P. ;
Parry, Blair Alden ;
Villani, Alexandra-Chloe ;
Sade-Feldman, Moshe ;
Hacohen, Nir ;
Goldberg, Marcia B. .
CELL REPORTS MEDICINE, 2021, 2 (05)
[6]   Plasma Proteome Profiling to detect and avoid sample-related biases in biomarker studies [J].
Geyer, Philipp E. ;
Voytik, Eugenia ;
Treit, Peter V. ;
Doll, Sophia ;
Kleinhempel, Alisa ;
Niu, Lili ;
Mueller, Johannes B. ;
Buchholtz, Marie-Luise ;
Bader, Jakob M. ;
Teupser, Daniel ;
Holdt, Lesca M. ;
Mann, Matthias .
EMBO MOLECULAR MEDICINE, 2019, 11 (11)
[7]   Longitudinal plasma protein profiling of newly diagnosed type 2 diabetes [J].
Gummesson, Anders ;
Bjornson, Elias ;
Fagerberg, Linn ;
Zhong, Wen ;
Tebani, Abdellah ;
Edfors, Fredrik ;
Schmidt, Caroline ;
Lundqvist, Annika ;
Adiels, Martin ;
Baeckhed, Fredrik ;
Schwenk, Jochen M. ;
Jansson, Per-Anders ;
Uhlen, Mathias ;
Bergstrom, Goran .
EBIOMEDICINE, 2021, 63
[8]   Evaluating the effects of preanalytical variables on the stability of the human plasma proteome [J].
Hassis, Maria E. ;
Niles, Richard K. ;
Braten, Miles N. ;
Albertolle, Matthew E. ;
Witkowska, H. Ewa ;
Hubel, Carl A. ;
Fisher, Susan J. ;
Williams, Katherine E. .
ANALYTICAL BIOCHEMISTRY, 2015, 478 :14-22
[9]   Metabolite Ratios as Quality Indicators for Pre-Analytical Variation in Serum and EDTA Plasma [J].
Heiling, Sven ;
Knutti, Nadine ;
Scherr, Franziska ;
Geiger, Jorg ;
Weikert, Juliane ;
Rose, Michael ;
Jahns, Roland ;
Ceglarek, Uta ;
Scherag, Andre ;
Kiehntopf, Michael .
METABOLITES, 2021, 11 (09)
[10]   Quality Markers Addressing Preanalytical Variations of Blood and Plasma Processing Identified by Broad and Targeted Metabolite Profiling [J].
Kamlage, Beate ;
Maldonado, Sandra Gonzalez ;
Bethan, Bianca ;
Peter, Erik ;
Schmitz, Oliver ;
Liebenberg, Volker ;
Schatz, Philipp .
CLINICAL CHEMISTRY, 2014, 60 (02) :399-412