High-temperature effect on electrochemical performance of Li4Ti5O12 based anode material for Li-ion batteries

被引:25
作者
Yang, Zhen [1 ]
Huang, Qian [1 ]
Li, Shaojie [1 ]
Mao, Jian [1 ]
机构
[1] Sichuan Univ, Coll Mat Sci & Engn, Chengdu 610065, Sichuan, Peoples R China
关键词
Li4Ti5O12; Li4Ti5O12-rutile TiO2; High temperature; Electrochemical properties; Lithium ion batteries; SOLID-STATE; LITHIUM; TIO2; ELECTROLYTES; NANOSHEET; COMPOSITE; NANOCRYSTALS; STABILITY; DIFFUSION; INSERTION;
D O I
10.1016/j.jallcom.2018.04.105
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The electrochemical properties of Li4Ti5O12-rutile TiO2 (LTO-RTO) and Li4Ti5O12 (LTO) have been investigated at ambient temperatures from 25 degrees C to 60 degrees C. X-ray Diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) were utilized to characterize the structure, morphology and surface elemental composition of the electrodes after rate cycle at different temperature. The XRD and TEM results show that there is the strongest peak shift from (111) to (400) after rate cycle and the intensity ratio of these two peaks increased slightly at high temperature. The electrochemical results of the two anode materials indicate that the rate capabilities are sensitive to the high temperature for the lamellar structure clustered, the serious decomposition of electrolyte, the solid electrolyte interface resistance (R-SEI) substantially decreasing and the lithium ion diffusion rate enhancing with the ambient temperature increase. Nevertheless, LTO-RTO shows better rate capacity which is attribute to the existence of RTO which enables the LTO-RTO to maintain the lamellar staked structure at high temperature cycles and enhances the Li+ insertion/ extraction kinetics of the electrode. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:192 / 202
页数:11
相关论文
共 47 条
[1]   Investigation of lithium diffusion in nano-sized rutile TiO2 by impedance spectroscopy [J].
Bach, S. ;
Pereira-Ramos, J. P. ;
Willman, P. .
ELECTROCHIMICA ACTA, 2010, 55 (17) :4952-4959
[2]   Enhancing the Long-Term Cyclability and Rate Capability of Li4Ti5O12 by Simple Copper-Modification [J].
Bai, Xue ;
Li, Tao ;
Wei, Cheng ;
Sun, Yun-Kai ;
Qi, Yong-Xin ;
Zhu, Hui-Ling ;
Lun, Ning ;
Bai, Yu-Jun .
ELECTROCHIMICA ACTA, 2015, 155 :132-139
[3]   On the safety of the Li4Ti5O12/LiMn2O4 lithium-ion battery system [J].
Belharouak, I. ;
Sun, Y.-K. ;
Lu, W. ;
Amine, K. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (12) :A1083-A1087
[4]   The superior lithium storage capabilities of ultra-fine rutile TiO2 nanoparticles [J].
Chen, Jun Song ;
Lou, Xiong Wen .
JOURNAL OF POWER SOURCES, 2010, 195 (09) :2905-2908
[5]   Temperature- and time-tuned morphological evolution of polyhedral magnetite nanocrystals and their facet-dependent high-rate performance for lithium-ion batteries [J].
Ding, Chuan ;
Zeng, Yanwei ;
Li, Rongjie ;
Zhang, Yuan ;
Zhao, Longfei .
JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 676 :347-355
[6]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[7]   Porous Li4Ti5O12-TiO2 nanosheet arrays for high-performance lithium-ion batteries [J].
Gao, Lin ;
Li, Shaohui ;
Huang, Dekang ;
Shen, Yan ;
Wang, Mingkui .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (18) :10107-10113
[8]   Lithium diffusion in rutile structured titania [J].
Gligor, F. ;
de Leeuw, S. W. .
SOLID STATE IONICS, 2006, 177 (26-32) :2741-2746
[9]   Design and synthesis of dual-phase Li4Ti5O12-TiO2 nanoparticles as anode material for lithium ion batteries [J].
Gu, Yuanxiang ;
Zhu, Yujing ;
Tang, ZhanLei ;
Zhang, Yiheng ;
Yang, Yu ;
Wang, Lei .
MATERIALS LETTERS, 2014, 131 :118-121
[10]   Topotactic conversion-derived Li4Ti5O12-rutile TiO2 hybrid nanowire array for high-performance lithium ion full cells [J].
Guo, Junling ;
Liu, Jinping .
RSC ADVANCES, 2014, 4 (25) :12950-12957