Evolutionary Ordinal Extreme Learning Machine

被引:0
|
作者
Sanchez-Monedero, Javier [1 ]
Antonio Gutierrez, Pedro [1 ]
Hervas-Martinez, Cesar [1 ]
机构
[1] Univ Cordoba, Dept Comp Sci & Numer Anal, E-14071 Cordoba, Spain
来源
HYBRID ARTIFICIAL INTELLIGENT SYSTEMS | 2013年 / 8073卷
关键词
ordinal classification; ordinal regression; extreme learning machine; differential evolution; class imbalance; REGRESSION; CLASSIFICATION; CLASSIFIERS; MULTICLASS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently the ordinal extreme learning machine (ELMOR) algorithm has been proposed to adapt the extreme learning machine (ELM) algorithm to ordinal regression problems (problems where there is an order arrangement between categories). In addition, the ELM standard model has the drawback of needing many hidden layer nodes in order to achieve suitable performance. For this reason, several alternatives have been proposed, such as the evolutionary extreme learning machine (EELM). In this article we present an evolutionary ELMOR that improves the performance of ELMOR and EELM for ordinal regression. The model is integrated in the differential evolution algorithm of EELM, and it is extended to allow the use of a continuous weighted RMSE fitness function which is proposed to guide the optimization process. This favors classifiers which predict labels as close as possible (in the ordinal scale) to the real one. The experiments include eight datasets, five methods and three specific performance metrics. The results show the performance improvement of this type of neural networks for specific metrics which consider both the magnitude of errors and class imbalance.
引用
收藏
页码:500 / 509
页数:10
相关论文
共 50 条
  • [41] A soft sensor for industrial melt index prediction based on evolutionary extreme learning machine
    Zhang, Miao
    Liu, Xinggao
    Zhang, Zeyin
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2016, 24 (08) : 1013 - 1019
  • [42] Timeliness online regularized extreme learning machine
    Luo, Xiong
    Yang, Xiaona
    Jiang, Changwei
    Ban, Xiaojuan
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2018, 9 (03) : 465 - 476
  • [43] A study on residence error of training an extreme learning machine and its application to evolutionary algorithms
    Fu, Ai-Min
    Wang, Xi-Zhao
    He, Yu-Lin
    Wang, Lai-Sheng
    NEUROCOMPUTING, 2014, 146 : 75 - 82
  • [44] Rational and self-adaptive evolutionary extreme learning machine for electricity price forecast
    Chixin Xiao
    Zhaoyang Dong
    Yan Xu
    Ke Meng
    Xun Zhou
    Xin Zhang
    Memetic Computing, 2016, 8 : 223 - 233
  • [45] Rational and self-adaptive evolutionary extreme learning machine for electricity price forecast
    Xiao, Chixin
    Dong, Zhaoyang
    Xu, Yan
    Meng, Ke
    Zhou, Xun
    Zhang, Xin
    MEMETIC COMPUTING, 2016, 8 (03) : 223 - 233
  • [46] Short-term load forecasting by wavelet transform and evolutionary extreme learning machine
    Li, Song
    Wang, Peng
    Goel, Lalit
    ELECTRIC POWER SYSTEMS RESEARCH, 2015, 122 : 96 - 103
  • [47] Robust extreme learning machine
    Horata, Punyaphol
    Chiewchanwattana, Sirapat
    Sunat, Khamron
    NEUROCOMPUTING, 2013, 102 : 31 - 44
  • [48] An Overview of Extreme Learning Machine
    Deng, Bohua
    Zhang, Xinman
    Gong, Weiyong
    Shang, Dongpeng
    2019 4TH INTERNATIONAL CONFERENCE ON CONTROL, ROBOTICS AND CYBERNETICS (CRC 2019), 2019, : 189 - 195
  • [49] Performance of Extreme Learning Machine
    Al-nagashi, Fateh Alrahman Kamal Qasem
    Rahim, Norasmadi Abdul
    INTELLIGENT MANUFACTURING AND MECHATRONICS, SIMM 2023, 2024, : 165 - 185
  • [50] An improved evolutionary extreme learning machine based on particle swarm optimization
    Han, Fei
    Yao, Hai-Fen
    Ling, Qing-Hua
    NEUROCOMPUTING, 2013, 116 : 87 - 93