Approximation numbers in function spaces and the distribution of eigenvalues of some fractal elliptic operators

被引:8
作者
Triebel, H [1 ]
机构
[1] Univ Jena, Math Inst, D-07740 Jena, Germany
关键词
function spaces; radon measures; fractals; distribution of eigenvalues; wavelet frames;
D O I
10.1016/j.jat.2004.05.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is threefold. Firstly, we deal with approximation numbers of compact embeddings B-pp(s) (R-n) curved right arrow L-p(mu), s > 0, 1 < p < infinity, where p is an (isotropic) Radon measure in R-n. Secondly, we apply the outcome to study the distribution of the eigenvalues of fractal elliptic operators B-s = (id - Delta)(-s)(degrees)mu, s > 0. Thirdly, we wish to demonstrate that the theory of subatomic wavelet frames in function spaces according to (Studia Math. 154 (2003) 59) is an efficient tool to handle problems of this and related type. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 27
页数:27
相关论文
共 37 条
  • [1] [Anonymous], 1987, SPECTRAL THEORY DIFF
  • [2] [Anonymous], 1997, ASYMPTOTIC DISTRIBUT
  • [3] BOURBAKI N, 1956, ELEMENTS MATH, V21, pCH5
  • [4] Tailored Besov spaces and h-sets
    Bricchi, M
    [J]. MATHEMATISCHE NACHRICHTEN, 2004, 263 : 36 - 52
  • [5] Bricchi M, 2003, FUNCTION SPACES, DIFFERENTIAL OPERATORS AND NONLINEAR ANALYSIS: THE HANS TRIEBEL ANNIVERSARY VOLUME, P219
  • [6] BRICCHI M, 2002, GEORGIAN MATH J, V9, P13
  • [7] About approximation numbers in function spaces
    Caetano, AM
    [J]. JOURNAL OF APPROXIMATION THEORY, 1998, 94 (03) : 383 - 395
  • [8] Caetano AM, 2003, FUNCTION SPACES, DIFFERENTIAL OPERATORS AND NONLINEAR ANALYSIS: THE HANS TRIEBEL ANNIVERSARY VOLUME, P237
  • [9] DAUBECHIES I, 1992, CBMS NSF REG C SERIE, V61
  • [10] Spectral theory for isotropic fractal drums
    Edmunds, D
    Triebel, H
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (11): : 1269 - 1274