Periodic points, linearizing maps, and the dynamical Mordell-Lang problem

被引:59
作者
Ghioca, D. [2 ]
Tucker, T. J. [1 ]
机构
[1] Univ Rochester, Dept Math, Rochester, NY 14627 USA
[2] Univ Lethbridge, Dept Math & Comp Sci, Lethbridge, AB T1K 3M4, Canada
关键词
Mordell-Lang conjecture; Dynamics;
D O I
10.1016/j.jnt.2008.09.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Under suitable hypotheses, we prove a dynamical version of the Mordell-Lang conjecture for subvarieties of quasiprojective varieties X, endowed with the action of a morphism Phi : X -> X. We also prove a version of the Mordell-Lang conjecture that holds for any endomorphism of a semiabelian variety. We use an analytic method based on the technique of Skolem, Mahler, and Lech, along with results of Herman and Yoccoz from nonarchimedean dynamics. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1392 / 1403
页数:12
相关论文
共 26 条
[1]  
[Anonymous], 1998, ELEMENTS MATH BERLIN
[2]  
[Anonymous], 2002, ALGEBRA
[3]   A generalised Skolem-Mahler-Lech theorem for affine varieties [J].
Bell, Jason R. .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2006, 73 :367-379
[4]  
BENEDETTO PL, 2007, DYNAMICAL MORD UNPUB
[5]  
Bruin N, 2003, J REINE ANGEW MATH, V562, P27
[6]   GEOMETRY AND RECURRENT SEQUENCES [J].
DENIS, L .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1994, 122 (01) :13-27
[7]  
DENIS L, 1992, OHIO ST U M, V2, P285
[8]  
Fakhruddin N., 2003, J. Ramanujan Math. Soc., V18, P109
[9]  
Faltings G., 1994, PERSPECT MATH, V15, P175
[10]   Finding rational points on bielliptic genus 2 curves [J].
Flynn, EV ;
Wetherell, JL .
MANUSCRIPTA MATHEMATICA, 1999, 100 (04) :519-533