A kernel-based dose calculation algorithm for kV photon beams with explicit handling of energy and material dependencies

被引:9
作者
Reinhart, Anna Merle [1 ]
Fast, Martin F.
Ziegenhein, Peter
Nill, Simeon
Oelfke, Uwe
机构
[1] Inst Canc Res, Joint Dept Phys, London, England
基金
英国工程与自然科学研究理事会;
关键词
SMALL ANIMAL RADIOTHERAPY; RADIATION RESEARCH PLATFORM; CONFORMAL RADIOTHERAPY; SYSTEM; SUPERPOSITION/CONVOLUTION; PERFORMANCE; VALIDATION; SIMULATION; THERAPY;
D O I
10.1259/bjr.20160426
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objective: Mimicking state-of-the-art patient radiotherapy with high-precision irradiators for small animals is expected to advance the understanding of dose-effect relationships and radiobiology in general. We work on the implementation of intensity-modulated radiotherapy-like irradiation schemes for small animals. As a first step, we present a fast analytical dose calculation algorithm for keV photon beams. Methods: We follow a superposition-convolution approach adapted to kV X-rays, based on previous work for microbeam therapy. We assume local energy deposition at the photon interaction point due to the short electron ranges in tissue. This allows us to separate the dose calculation into locally absorbed primary dose and the scatter contribution, calculated in a point kernel approach. We validate our dose model against Geant4 Monte Carlo (MC) simulations and compare the results to Muriplan (XStrahl Ltd, Camberley, UK). Results: For field sizes of (1mm)(2) to (1 cm)(2) in water, the depth dose curves show a mean disagreement of 1.7% to MC simulations, with the largest deviations in the entrance region (4%) and at large depths (5% at 7 cm). Larger discrepancies are observed at water-to-bone boundaries, in bone and at the beam edges in slab phantoms and a mouse brain. Calculation times are in the order of 5 s for a single beam. Conclusion: The algorithm shows good agreement with MC simulations in an initial validation. It has the potential to become an alternative to full MC dose calculation. Advances in knowledge: The presented algorithm demonstrates the potential of kernel-based dose calculation for kV photon beams. It will be valuable in intensity-modulated radiotherapy and inverse treatment planning for high precision small-animal radiotherapy.
引用
收藏
页数:10
相关论文
共 30 条
[1]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[2]   Geant4 developments and applications [J].
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Dubois, PA ;
Asai, M ;
Barrand, G ;
Capra, R ;
Chauvie, S ;
Chytracek, R ;
Cirrone, GAP ;
Cooperman, G ;
Cosmo, G ;
Cuttone, G ;
Daquino, GG ;
Donszelmann, M ;
Dressel, M ;
Folger, G ;
Foppiano, F ;
Generowicz, J ;
Grichine, V ;
Guatelli, S ;
Gumplinger, P ;
Heikkinen, A ;
Hrivnacova, I ;
Howard, A ;
Incerti, S ;
Ivanchenko, V ;
Johnson, T ;
Jones, F ;
Koi, T ;
Kokoulin, R ;
Kossov, M ;
Kurashige, H ;
Lara, V ;
Larsson, S ;
Lei, F ;
Link, O ;
Longo, F ;
Maire, M ;
Mantero, A ;
Mascialino, B ;
McLaren, I ;
Lorenzo, PM ;
Minamimoto, K ;
Murakami, K ;
Nieminen, P ;
Pandola, L ;
Parlati, S ;
Peralta, L .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2006, 53 (01) :270-278
[3]   A framework for inverse planning of beam-on times for 3D small animal radiotherapy using interactive multi-objective optimisation [J].
Balvert, Marleen ;
van Hoof, Stefan J. ;
Granton, Patrick V. ;
Trani, Daniela ;
den Hertog, Dick ;
Hoffmann, Aswin L. ;
Verhaegen, Frank .
PHYSICS IN MEDICINE AND BIOLOGY, 2015, 60 (14) :5681-5698
[4]  
Bartzsch S., 2014, THESIS
[5]   A new concept of pencil beam dose calculation for 40-200 keV photons using analytical dose kernels [J].
Bartzsch, Stefan ;
Oelfke, Uwe .
MEDICAL PHYSICS, 2013, 40 (11)
[6]   Modality comparison for small animal radiotherapy: A simulation study [J].
Bazalova, Magdalena ;
Nelson, Geoff ;
Noll, John M. ;
Graves, Edward E. .
MEDICAL PHYSICS, 2014, 41 (01)
[7]   The importance of tissue segmentation for dose calculations for kilovoltage radiation therapy [J].
Bazalova, Magdalena ;
Graves, Edward E. .
MEDICAL PHYSICS, 2011, 38 (06) :3039-3049
[8]   Small animal image-guided radiotherapy: status, considerations and potential for translational impact [J].
Butterworth, K. T. ;
Prise, K. M. ;
Verhaegen, F. .
BRITISH JOURNAL OF RADIOLOGY, 2015, 88 (1045)
[9]  
Cho N, 2012, MIDAS J, P1
[10]   Treatment planning for a small animal using Monte Carlo simulation [J].
Chow, James C. L. ;
Leung, Michael K. K. .
MEDICAL PHYSICS, 2007, 34 (12) :4810-4817