Cost-sensitive Dictionary Learning for Software Defect Prediction

被引:13
作者
Niu, Liang [1 ]
Wan, Jianwu [1 ,2 ]
Wang, Hongyuan [1 ]
Zhou, Kaiwei [1 ]
机构
[1] Changzhou Univ, Sch Informat Sci & Engn, Changzhou 213164, Jiangsu, Peoples R China
[2] Nanyang Technol Univ, Sch Civil & Environm Engn, Singapore 639798, Singapore
基金
中国国家自然科学基金;
关键词
Software defect prediction; Cost-sensitive; Dictionary learning; Discrimination; LABEL PROPAGATION; NEURAL-NETWORKS; RECOGNITION; INFORMATION; MACHINE; QUALITY;
D O I
10.1007/s11063-020-10355-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, software defect prediction has been recognized as a cost-sensitive learning problem. To deal with the unequal misclassification losses resulted by different classification errors, some cost-sensitive dictionary learning methods have been proposed recently. Generally speaking, these methods usually define the misclassification costs to measure the unequal losses and then propose to minimize the cost-sensitive reconstruction loss by embedding the cost information into the reconstruction function of dictionary learning. Although promising performance has been achieved, their cost-sensitive reconstruction functions are not well-designed. In addition, no sufficient attentions are paid to the coding coefficients which can also be helpful to reduce the reconstruction loss. To address these issues, this paper proposes a new cost-sensitive reconstruction loss function and introduces an additional cost-sensitive discrimination regularization for the coding coefficients. Both the two terms are jointly optimized in a unified cost-sensitive dictionary learning framework. By doing so, we can achieve the minimum reconstruction loss and thus obtain a more cost-sensitive dictionary for feature encoding of test data. In the experimental part, we have conducted extensive experiments ontwenty-fivesoftware projects from four benchmark datasets of NASA, AEEEM, ReLink and Jureczko. The results, in comparison withtenstate-of-the-art software defect prediction methods, demonstrate the effectiveness of learned cost-sensitive dictionary for software defect prediction.
引用
收藏
页码:2415 / 2449
页数:35
相关论文
共 50 条
  • [31] Robust SVM for Cost-Sensitive Learning
    Jiangzhang Gan
    Jiaye Li
    Yangcai Xie
    Neural Processing Letters, 2022, 54 : 2737 - 2758
  • [32] Cost-Sensitive Action Model Learning
    Rao, Dongning
    Jiang, Zhihua
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2016, 24 (02) : 167 - 193
  • [33] On the use of deep learning in software defect prediction
    Giray, Gorkem
    Bennin, Kwabena Ebo
    Koksal, Omer
    Babur, Onder
    Tekinerdogan, Bedir
    JOURNAL OF SYSTEMS AND SOFTWARE, 2023, 195
  • [34] Improving Ranking-Oriented Defect Prediction Using a Cost-Sensitive Ranking SVM
    Yu, Xiao
    Liu, Jin
    Keung, Jacky Wai
    Li, Qing
    Bennin, Kwabena Ebo
    Xu, Zhou
    Wang, Junping
    Cui, Xiaohui
    IEEE TRANSACTIONS ON RELIABILITY, 2020, 69 (01) : 139 - 153
  • [35] Merge reduction for cost-sensitive learning
    Zhang, Aiting
    Xu, Juan
    Chen, Wenbin
    Min, Fan
    Journal of Computational Information Systems, 2014, 10 (23): : 10093 - 10102
  • [36] Robust SVM for Cost-Sensitive Learning
    Gan, Jiangzhang
    Li, Jiaye
    Xie, Yangcai
    NEURAL PROCESSING LETTERS, 2022, 54 (04) : 2737 - 2758
  • [37] Cost-Sensitive Siamese Network for PCB Defect Classification
    Miao, Yilin
    Liu, Zhewei
    Wu, Xiangning
    Gao, Jie
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021 (2021)
  • [38] Machine learning models and cost-sensitive decision trees for bond rating prediction
    Ben Jabeur, Sarni
    Sadaaoui, Amir
    Sghaier, Asma
    Aloui, Riadh
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2020, 71 (08) : 1161 - 1179
  • [39] Using Class Imbalance Learning for Software Defect Prediction
    Wang, Shuo
    Yao, Xin
    IEEE TRANSACTIONS ON RELIABILITY, 2013, 62 (02) : 434 - 443
  • [40] Semi-supervised Software Defect Prediction Using Task-Driven Dictionary Learning
    Cheng Ming
    Wu Guoqing
    Yuan Mengting
    Wan Hongyan
    CHINESE JOURNAL OF ELECTRONICS, 2016, 25 (06) : 1089 - 1096