Electricity Generation and Pollutant Degradation Using a Novel Biocathode Coupled Photoelectrochemical Cell

被引:89
|
作者
Du, Yue [1 ]
Feng, Yujie [1 ]
Qu, Youpeng [1 ]
Liu, Jia [1 ]
Ren, Nanqi [1 ]
Liu, Hong [1 ]
机构
[1] Harbin Inst Technol, State Key Lab Urban Water Resource & Environm, Harbin 150090, Peoples R China
关键词
TIO2 NANOTUBE ARRAYS; FILM PHOTOANODE; OXIDATION; CATALYSTS; CATHODE; BIOMASS; WASTES;
D O I
10.1021/es5011994
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The photoelectrochemical cell (PEC) is a promising tool for the degradation of organic pollutants and simultaneous electricity recovery, however, current cathode catalysts suffer from high costs and short service lives. Herein, we present a novel biocathode coupled PEC (Bio-PEC) integrating the advantages of photocatalytic anode and biocathode. Electrochemical anodized TiO2 nanotube arrays fabricated on Ti substrate were used as Bio-PEC anodes. Field-emission scanning electron microscope images revealed that the well-aligned TiO2 nanotubes had inner diameters of 60-100 nm and wall-thicknesses of about 5 nm. Linear sweep voltammetry presented the pronounced photocurrent output (325 mu A/cm(2)) under xenon illumination, compared with that under dark conditions. Comparing studies were carried out between the Bio-PEC and PECs with Pt/C cathodes. The results showed that the performance of Pt/C cathodes was closely related with the structure and Pt/C loading amounts of cathodes, while the Bio-PEC achieved similar methyl orange (MO) decoloration rate (0.0120 min(-1)) and maximum power density (211.32 mW/m(2)) to the brush cathode PEC with 50 mg Pt/C loading (Brush-PEC, 50 mg). The fill factors of Bio-PEC and Brush-PEC (50 mg) were 39.87% and 43.06%, respectively. The charge transfer resistance of biocathode was 13.10 Omega, larger than the brush cathode with 50 mg Pt/C (10.68 Omega), but smaller than the brush cathode with 35 mg Pt/C (18.35 Omega), indicating the comparable catalytic activity with Pt/C catalyst. The biocathode was more dependent on the nutrient diffusion, such as nitrogen and inorganic carbon, thus resulting in relatively higher diffusion resistance compared to the brush cathode with 50 mg Pt/C loading that yielded similar MO removal and power output. Considering the performance and cost of PEC system, the biocathode was a promising alternative for the Pt/C catalyst.
引用
收藏
页码:7634 / 7641
页数:8
相关论文
共 50 条
  • [31] The phenol efficient degradation using co-culture coupled with enhanced electricity generation capability
    Zhan, Yue
    Ma, Yamei
    Cai, Ting
    Gao, Shengchao
    Zhang, Zhen
    Gao, Tianpeng
    Liu, Ying
    ELECTROANALYSIS, 2023, 35 (10)
  • [32] Enhanced electricity generation and pollutant removal in a microbial fuel cell combined with a solar cell
    Sun, Zhe
    Cao, Ruixue
    Huang, Manhong
    Sun, Peizhe
    Tang, Chao
    Chen, Donghui
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2015, 7 (04)
  • [33] Carbon nanotube/chitosan nanocomposite as a biocompatible biocathode material to enhance the electricity generation of a microbial fuel cell
    Liu, Xian-Wei
    Sun, Xue-Fei
    Huang, Yu-Xi
    Sheng, Guo-Ping
    Wang, Shu-Guang
    Yu, Han-Qing
    ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (04) : 1422 - 1427
  • [34] Photoelectrochemical cell for simultaneous electricity generation and heavy metals recovery from wastewater
    Wang, Dawei
    Li, Yi
    Puma, Gianluca Li
    Lianos, Panagiotis
    Wang, Chao
    Wang, Peifang
    JOURNAL OF HAZARDOUS MATERIALS, 2017, 323 : 681 - 689
  • [35] Photoelectrochemical cell for simultaneous electricity generation and heavy metals recovery from wastewater
    Wang, Dawei
    Li Puma, Gianluca
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [36] Innovative constructed wetland coupled with microbial fuel cell for enhancing diazo dye degradation with simultaneous electricity generation
    Saket, Palak
    Mittal, Yamini
    Bala, Kiran
    Joshi, Abhijeet
    Yadav, Asheesh Kumar
    BIORESOURCE TECHNOLOGY, 2022, 345
  • [37] In-situ utilization of generated electricity in a photocatalytic fuel cell to enhance pollutant degradation
    Sui, Mingrui
    Dong, Yue
    Bai, Weikun
    Ambuchi, John J.
    You, Hong
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2017, 343 : 51 - 57
  • [38] Electricity generation coupled to oxidation of propionate in a microbial fuel cell
    Jang, Jae Kyung
    Chang, In Seop
    Hwang, Hwa Yeon
    Choo, Yeng Fung
    Lee, JiYoung
    Cho, Kyung Suk
    Kim, Byung Hong
    Nealson, Kenneth H.
    BIOTECHNOLOGY LETTERS, 2010, 32 (01) : 79 - 85
  • [39] Electricity generation coupled to oxidation of propionate in a microbial fuel cell
    Jae Kyung Jang
    In Seop Chang
    Hwa Yeon Hwang
    Yeng Fung Choo
    JiYoung Lee
    Kyung Suk Cho
    Byung Hong Kim
    Kenneth H. Nealson
    Biotechnology Letters, 2010, 32 : 79 - 85
  • [40] Dye degradation and electricity generation using microbial fuel cell with graphene oxide modified anode
    Khalid, Sara
    Alvi, Farah
    Fatima, Masoom
    Aslam, Muhammad
    Riaz, Sara
    Farooq, Robina
    Zhang, Yongyu
    MATERIALS LETTERS, 2018, 220 : 272 - 276