Support vector machines versus logistic regression: improving prospective performance in clinical decision-making

被引:50
作者
Pochet, NLMM [1 ]
Suykens, JAK [1 ]
机构
[1] Katholieke Univ Leuven, Dept Elect Engn, B-3001 Louvain, Belgium
关键词
D O I
10.1002/uog.2791
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
引用
收藏
页码:607 / 608
页数:2
相关论文
共 7 条
[1]  
[Anonymous], 2002, Least Squares Support Vector Machines
[2]   New models to predict depth of infiltration in endometrial carcinoma based on transvaginal sonography [J].
De Smet, F. ;
De Brabanter, J. ;
Van Den Boschs, T. ;
Pochet, N. ;
Amant, F. ;
Van Holsbeke, C. ;
Moerman, P. ;
De Moor, B. ;
Vergote, I. ;
Timmerman, D. .
ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2006, 27 (06) :664-671
[3]   An algorithm including results of gray-scale and power Doppler ultrasound examination to predict endometrial malignancy in women with postmenopausal bleeding [J].
Epstein, E ;
Skoog, L ;
Isberg, PE ;
De Smet, F ;
De Moor, B ;
Olofsson, PÅ ;
Gudmundsson, S ;
Valentin, L .
ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2002, 20 (04) :370-376
[4]   Stronger association between obesity and biochemical progression after radical prostatectomy among men treated in the last 10 years [J].
Freedland, SJ ;
Isaacs, WB ;
Mangold, LA ;
Yiu, SK ;
Grubb, KY ;
Partin, AW ;
Epstein, JI ;
Walsh, PC ;
Platz, EA .
CLINICAL CANCER RESEARCH, 2005, 11 (08) :2883-2888
[5]   Benchmarking least squares support vector machine classifiers [J].
van Gestel, T ;
Suykens, JAK ;
Baesens, B ;
Viaene, S ;
Vanthienen, J ;
Dedene, G ;
de Moor, B ;
Vandewalle, J .
MACHINE LEARNING, 2004, 54 (01) :5-32
[6]  
Vapnik V., 1998, STAT LEARNING THEORY, V1, P2
[7]  
LS SVMLAB VERSION 1