Regularised Finite Difference Methods for the Logarithmic Klein-Gordon Equation

被引:4
作者
Yan, Jingye [1 ]
Zhang, Hong [1 ]
Qian, Xu [1 ]
Song, Songhe [1 ,2 ]
机构
[1] Natl Univ Def Technol, Coll Arts & Sci, Dept Math, Changsha 410073, Peoples R China
[2] Natl Univ Def Technol, State Key Lab High Performance Comp, Changsha 410073, Peoples R China
基金
中国国家自然科学基金;
关键词
Logarithmic Klein-Gordon equation; regularised logarithmic Klein-Gordon equation; finite difference method; error estimate; convergence order; PSEUDOSPECTRAL METHOD; SCHRODINGER-EQUATION; NUMERICAL-METHODS; GLOBAL-SOLUTIONS; MODEL; SOLITONS; SCHEMES; SYSTEM;
D O I
10.4208/eajam.140820.250820
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two regularised finite difference methods for the logarithmic Klein-Gordon equation are studied. In order to deal with the origin singularity, we employ regularised logarithmic Klein-Gordon equations with a regularisation parameter 0 < epsilon < 1. Two finite difference methods are applied to the regularised equations. It is proven that the methods have the second order of accuracy both in space and time. Numerical experiments show that the solutions of the regularised equations converge to the solution of the initial equation as O(epsilon).
引用
收藏
页码:119 / 142
页数:24
相关论文
共 50 条
[1]   NONEXISTENCE OF GLOBAL-SOLUTIONS OF THE INITIAL-BOUNDARY VALUE-PROBLEM FOR THE NONLINEAR KLEIN-GORDON EQUATION [J].
BAINOV, DD ;
MINCHEV, E .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (02) :756-762
[2]  
Bao W. Z., 2020, 200605114 ARXIV
[3]   Comparison of numerical methods for the nonlinear Klein-Gordon equation in the nonrelativistic limit regime [J].
Bao, Weizhu ;
Zhao, Xiaofei .
JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 398
[4]   Regularized numerical methods for the logarithmic Schrodinger equation [J].
Bao, Weizhu ;
Carles, Remi ;
Su, Chunmei ;
Tang, Qinglin .
NUMERISCHE MATHEMATIK, 2019, 143 (02) :461-487
[5]   Long Time Error Analysis of Finite Difference Time Domain Methods for the Nonlinear Klein-Gordon Equation with Weak Nonlinearity [J].
Bao, Weizhu ;
Feng, Yue ;
Yi, Wenfan .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2019, 26 (05) :1307-1334
[6]   A uniformly accurate (UA) multiscale time integrator Fourier pseudospectral method for the Klein-Gordon-Schrodinger equations in the nonrelativistic limit regime [J].
Bao, Weizhu ;
Zhao, Xiaofei .
NUMERISCHE MATHEMATIK, 2017, 135 (03) :833-873
[7]   A uniformly accurate multiscale time integrator spectral method for the Klein-Gordon-Zakharov system in the high-plasma-frequency limit regime [J].
Bao, Weizhu ;
Zhao, Xiaofei .
JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 327 :270-293
[8]   A UNIFORMLY ACCURATE MULTISCALE TIME INTEGRATOR PSEUDOSPECTRAL METHOD FOR THE KLEIN-GORDON EQUATION IN THE NONRELATIVISTIC LIMIT REGIME [J].
Bao, Weizhu ;
Cai, Yongyong ;
Zhao, Xiaofei .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (05) :2488-2511
[9]   AN EXPONENTIAL WAVE INTEGRATOR SINE PSEUDOSPECTRAL METHOD FOR THE KLEIN-GORDON-ZAKHAROV SYSTEM [J].
Bao, Weizhu ;
Dong, Xuanchun ;
Zhao, Xiaofei .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (06) :A2903-A2927
[10]   OPTIMAL ERROR ESTIMATES OF FINITE DIFFERENCE METHODS FOR THE GROSS-PITAEVSKII EQUATION WITH ANGULAR MOMENTUM ROTATION [J].
Bao, Weizhu ;
Cai, Yongyong .
MATHEMATICS OF COMPUTATION, 2013, 82 (281) :99-128