Algebraic actions of the discrete Heisenberg group: Expansiveness and homoclinic points

被引:6
|
作者
Goll, Martin [1 ]
Schmidt, Klaus [2 ,3 ]
Verbitskiy, Evgeny [1 ,4 ]
机构
[1] Leiden Univ, Math Inst, NL-2300 RA Leiden, Netherlands
[2] Univ Vienna, Math Inst, A-1090 Vienna, Austria
[3] Erwin Schrodinger Inst Math Phys, A-1090 Vienna, Austria
[4] Univ Groningen, Johann Bernoulli Inst Math & Comp Sci, NL-9700 AK Groningen, Netherlands
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2014年 / 25卷 / 04期
关键词
Expansiveness; Homoclinic points; Algebraic action; Symbolic covers; PERIODIC POINTS;
D O I
10.1016/j.indag.2014.04.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We survey some of the known criteria for expansiveness of principal algebraic actions of countably infinite discrete groups. In the special case of the discrete Heisenberg group we propose a new approach to this problem based on Allan's local principle. Furthermore, we present a first example of an absolutely summable homoclinic point for a nonexpansive action of the discrete Heisenberg group and use it to construct an equal-entropy symbolic cover of the system. (C) 2014 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:713 / 744
页数:32
相关论文
共 9 条
  • [1] A survey of algebraic actions of the discrete Heisenberg group
    Lind, D.
    Schmidt, K.
    RUSSIAN MATHEMATICAL SURVEYS, 2015, 70 (04) : 657 - 714
  • [2] Homoclinic Points of Principal Algebraic Actions
    Goll, Martin
    Verbitskiy, Evgeny
    MACROSCOPIC AND LARGE SCALE PHENOMENA: COARSE GRAINING, MEAN FIELD LIMITS AND ERGODICITY, 2016, 3 : 251 - 292
  • [3] Homoclinic points of algebraic Zd-actions
    Lind, D
    Schmidt, K
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (04) : 953 - 980
  • [4] Markovian properties of continuous group actions: Algebraic actions, entropy and the homoclinic group
    Barbieri, Sebastian
    Garcia-Ramos, Felipe
    Li, Hanfeng
    ADVANCES IN MATHEMATICS, 2022, 397
  • [5] Entropy and Growth Rate of Periodic Points of Algebraic Zd-actions
    Lind, Douglas
    Schmidt, Klaus
    Verbitskiy, Evgeny
    DYNAMICAL NUMBERS: INTERPLAY BETWEEN DYNAMICAL SYSTEMS AND NUMBER THEORY, 2010, 532 : 195 - +
  • [6] Intrinsic Ergodicity, Generators, and Symbolic Representations of Algebraic Group Actions
    Li, Hanfeng
    Schmidt, Klaus
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2024, 58 (01) : 39 - 64
  • [7] The ping-pong game, geometric entropy and expansiveness for group actions on Peano continua having free dendrites
    Shi, Enhui
    Wang, Suhua
    FUNDAMENTA MATHEMATICAE, 2009, 203 (01) : 21 - 37
  • [9] Computation of homoclinic points using particle swarm optimization in 2-dimensional discrete dynamical systems
    Makino, Tatsumi
    Miino, Yuu
    Matsushita, Haruna
    Kousaka, Takuji
    2022 19TH INTERNATIONAL SOC DESIGN CONFERENCE (ISOCC), 2022, : 267 - 268