Combinatorially regular Euler polytopes

被引:1
|
作者
Hartley, M [1 ]
机构
[1] SEPANG INST TECHNOL,KLANG 41050,SELANGOR,MALAYSIA
关键词
D O I
10.1017/S0004972700030860
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:173 / 174
页数:2
相关论文
共 50 条
  • [1] COMBINATORIALLY REGULAR POLYTOPES
    MCMULLEN, P
    MATHEMATIKA, 1967, 14 (28P2) : 142 - &
  • [2] Combinatorially Two-Orbit Convex Polytopes
    Nicholas Matteo
    Discrete & Computational Geometry, 2016, 55 : 662 - 680
  • [3] Combinatorially Two-Orbit Convex Polytopes
    Matteo, Nicholas
    DISCRETE & COMPUTATIONAL GEOMETRY, 2016, 55 (03) : 662 - 680
  • [4] Combinatorially regular polyomino tilings
    Cannon, JW
    Floyd, WJ
    Parry, WR
    DISCRETE & COMPUTATIONAL GEOMETRY, 2006, 35 (02) : 269 - 285
  • [5] On combinatorially regular Frechet algebra
    Oukhouya, Ali
    Topological Algebras and Applications, 2007, 427 : 339 - 343
  • [6] COMBINATORIALLY REGULAR LEONARDO POLYHEDRA
    Wills, Joerg M.
    SYMMETRY-CULTURE AND SCIENCE, 2011, 22 (1-2): : 55 - 64
  • [7] Combinatorially Regular Polyomino Tilings
    James W. Cannon
    William J. Floyd
    Walter R. Parry
    Discrete & Computational Geometry, 2006, 35 : 269 - 285
  • [8] On combinatorially regular topological algebras
    Mallios, Anastasios
    Oukhouya, Ali
    Topological Algebras and Applications, 2007, 427 : 285 - 290
  • [9] ON REGULAR POLYTOPES
    Boya, Luis J.
    Rivera, Cristian
    REPORTS ON MATHEMATICAL PHYSICS, 2013, 71 (02) : 149 - 161
  • [10] Regular projections of regular polytopes
    Schoute, PH
    PROCEEDINGS OF THE KONINKLIJKE AKADEMIE VAN WETENSCHAPPEN TE AMSTERDAM, 1904, 6 : 783 - 785