Constructing tensor products of modules for C 2-cofinite vertex operator superalgebras

被引:0
作者
Han, Jianzhi [1 ]
机构
[1] Sichuan Univ, Dept Math, Chengdu 610064, Peoples R China
基金
中国博士后科学基金;
关键词
vertex operator superalgebra; tensor product; C-2-cofiniteness; ALGEBRAS; REPRESENTATIONS; C-2-COFINITENESS; RATIONALITY; INVARIANCE; MODULARITY;
D O I
10.1007/s11464-014-0369-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any C (2)-cofinite vertex operator superalgebra V, the tensor product and the P(z)-tensor product of any two admissible V -modules of finite length are proved to exist, which are shown to be isomorphic, and their constructions are given explicitly in this paper.
引用
收藏
页码:477 / 494
页数:18
相关论文
共 24 条
  • [1] Rationality, regularity, and C2-cofiniteness
    Abe, T
    Buhl, G
    Dong, CY
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (08) : 3391 - 3402
  • [2] [Anonymous], MEM AM MATH SOC
  • [3] [Anonymous], ARXIV07102687
  • [4] A spanning set for VOA modules
    Buhl, G
    [J]. JOURNAL OF ALGEBRA, 2002, 254 (01) : 125 - 151
  • [5] Spanning sets for Mobius vertex algebras satisfying arbitrary difference conditions
    Buhl, Geoffrey
    Karaali, Gizem
    [J]. JOURNAL OF ALGEBRA, 2008, 320 (08) : 3345 - 3364
  • [6] On Rationality of Vertex Operator Superalgebras
    Dong, Chongying
    Han, Jianzhi
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (16) : 4379 - 4399
  • [7] Representations of vertex operator algebras and bimodules
    Dong, Chongying
    Ren, Li
    [J]. JOURNAL OF ALGEBRA, 2013, 384 : 212 - 226
  • [8] SOME FINITE PROPERTIES FOR VERTEX OPERATOR SUPERALGEBRAS
    Dong, Chongying
    Han, Jianzhi
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2012, 258 (02) : 269 - 290
  • [9] Twisted representations of vertex operator algebras
    Dong, CY
    Li, HS
    Mason, G
    [J]. MATHEMATISCHE ANNALEN, 1998, 310 (03) : 571 - 600
  • [10] Modularity in orbifold theory for vertex operator superalgebras
    Dong, CY
    Zhao, ZP
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 260 (01) : 227 - 256