Choosing the Summary Statistics and the Acceptance Rate in Approximate Bayesian Computation

被引:18
作者
Blum, Michael G. B. [1 ]
机构
[1] UJF Grenoble, CNRS, Fac Med, Lab TIMC IMAG, F-38706 La Tronche, France
来源
COMPSTAT'2010: 19TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL STATISTICS | 2010年
关键词
approximate Bayesian computation; evidence approximation; empirical Bayes; Bayesian local regression;
D O I
10.1007/978-3-7908-2604-3_4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Approximate Bayesian Computation encompasses a family of likelihood free algorithms for performing Bayesian inference in models defined in terms of a generating mechanism. The different algorithms rely on simulations of some summary statistics under the generative model and a rejection criterion that determines if a simulation is rejected or not. In this paper, I incorporate Approximate Bayesian Computation into a local Bayesian regression framework. Using an empirical Bayes approach, we provide a simple criterion for 1)choosing the threshold above which a simulation should be rejected, 2)choosing the subset of informative summary statistics, and 3)choosing if a summary statistic should be log-transformed or not.
引用
收藏
页码:47 / 56
页数:10
相关论文
共 11 条
[1]  
[Anonymous], 2006, Pattern recognition and machine learning
[2]  
Beaumont MA, 2002, GENETICS, V162, P2025
[3]   Non-linear regression models for Approximate Bayesian Computation [J].
Blum, Michael G. B. ;
Francois, Olivier .
STATISTICS AND COMPUTING, 2010, 20 (01) :63-73
[4]   DESIGN-ADAPTIVE NONPARAMETRIC REGRESSION [J].
FAN, JQ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1992, 87 (420) :998-1004
[5]  
Gelman A, 2004, Bayesian Data Analysis, V2nd, DOI DOI 10.1007/S13398-014-0173-7.2
[6]  
Hjort N.L., 2003, Highly Structured Stochastic Systems, P455
[7]   RIDGE REGRESSION - BIASED ESTIMATION FOR NONORTHOGONAL PROBLEMS [J].
HOERL, AE ;
KENNARD, RW .
TECHNOMETRICS, 1970, 12 (01) :55-&
[8]  
Joyce Paul, 2008, Stat Appl Genet Mol Biol, V7, pArticle26, DOI 10.2202/1544-6115.1389
[9]  
MACKAY DJC, 1992, NEURAL COMPUT, V4, P415, DOI [10.1162/neco.1992.4.3.415, 10.1162/neco.1992.4.3.448]
[10]   Markov chain Monte Carlo without likelihoods [J].
Marjoram, P ;
Molitor, J ;
Plagnol, V ;
Tavaré, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (26) :15324-15328