Cost-effective CO2 capture based on in silico screening of zeolites and process optimization

被引:118
作者
Hasan, M. M. Faruque [1 ]
First, Eric L. [1 ]
Floudas, Christodoulos A. [1 ]
机构
[1] Princeton Univ, Dept Chem & Biol Engn, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
PRESSURE-SWING ADSORPTION; CARBON-DIOXIDE CAPTURE; METAL-ORGANIC FRAMEWORKS; FLUE-GAS; SOLID SORBENTS; SEPARATION; TECHNOLOGY; 13X; SEQUESTRATION; SIMULATION;
D O I
10.1039/c3cp53627k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A hierarchical computational approach is introduced that combines materials screening with process optimization. This approach leads to novel materials for cost-effective CO2 capture. Zeolites are screened using shape, size, and adsorption selectivities. Next, process optimization is introduced to generate a rank-ordered list based on total cost of capture and compression. We not only select the most cost-effective materials, but we also attain the optimal process conditions while satisfying purity, recovery, and other process constraints. The top ten zeolites (AHT, NAB, MVY, ABW, AWO, WEI, VNI, TON, OFF and ITW) can capture and compress CO2 to 150 bar from a mixture of 14% CO2 and 86% N-2 at less than $30 per ton of CO2 captured. Several zeolites have moderate selectivities, yet they cost-effectively capture CO2 with 90% purity and 90% recovery using a 4-step adsorption process. Such nonintuitive selection demonstrates the necessity of combining materials-centric and process-centric viewpoints.
引用
收藏
页码:17601 / 17618
页数:18
相关论文
共 57 条
[1]   A Superstructure-Based Optimal Synthesis of PSA Cycles for Post-Combustion CO2 Capture [J].
Agarwal, Anshul ;
Biegler, Lorenz T. ;
Zitney, Stephen E. .
AICHE JOURNAL, 2010, 56 (07) :1813-1828
[2]   Superstructure-Based Optimal Synthesis of Pressure Swing Adsorption Cycles for Precombustion CO2 Capture [J].
Agarwal, Anshul ;
Biegler, Lorenz T. ;
Zitney, Stephen E. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2010, 49 (11) :5066-5079
[3]  
[Anonymous], 2007, DOENETL401110907
[4]   Development and Evaluation of Porous Materials for Carbon Dioxide Separation and Capture [J].
Bae, Youn-Sang ;
Snurr, Randall Q. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (49) :11586-11596
[5]   Enhancement of CO2/N2 selectivity in a metal-organic framework by cavity modification [J].
Bae, Youn-Sang ;
Farha, Omar K. ;
Hupp, Joseph T. ;
Snurr, Randall Q. .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (15) :2131-2134
[6]   Simple methodology for sizing of absorbers for TEG (triethylene glycol) gas dehydration systems [J].
Bahadori, Alireza ;
Vuthaluru, Hari B. .
ENERGY, 2009, 34 (11) :1910-1916
[7]   CO2 mitigation with microalgae systems [J].
Benemann, JR .
ENERGY CONVERSION AND MANAGEMENT, 1997, 38 :S475-S479
[8]   Analysis and Status of Post-Combustion Carbon Dioxide Capture Technologies [J].
Bhown, Abhoyjit S. ;
Freeman, Brice C. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (20) :8624-8632
[9]   Canonical sampling through velocity rescaling [J].
Bussi, Giovanni ;
Donadio, Davide ;
Parrinello, Michele .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (01)
[10]   Carbon Capture and Sequestration [J].
Chu, Steven .
SCIENCE, 2009, 325 (5948) :1599-1599