Inference of spatiotemporal effects on cellular state transitions from time-lapse microscopy

被引:2
作者
Strasser, Michael K. [1 ]
Feigelman, Justin [1 ,2 ]
Theis, Fabian J. [1 ,2 ]
Marr, Carsten [1 ]
机构
[1] German Res Ctr Environm Hlth, Helmholtz Zentrum Munchen, Inst Computat Biol, D-85764 Neuherberg, Germany
[2] Tech Univ Munich, Dept Math, D-85747 Garching, Germany
基金
欧洲研究理事会;
关键词
Cell state transition; Time-lapse microscopy; Single cell analysis; LASSO; Spatial interaction; STEM-CELLS; POPULATION CONTEXT; REGRESSION; DIFFERENTIATION; HETEROGENEITY; MODELS;
D O I
10.1186/s12918-015-0208-5
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Time-lapse microscopy allows to monitor cell state transitions in a spatiotemporal context. Combined with single cell tracking and appropriate cell state markers, transition events can be observed within the genealogical relationship of a proliferating population. However, to infer the correlations between the spatiotemporal context and cell state transitions, statistical analysis with an appropriately large number of samples is required. Results: Here, we present a method to infer spatiotemporal features predictive of the state transition events observed in time-lapse microscopy data. We first formulate a generative model, simulate different scenarios, such as time-dependent or local cell density-dependent transitions, and illustrate how to estimate univariate transition rates. Second, we formulate the problem in a machine-learning language using regularized linear models. This allows for a multivariate analysis and to disentangle indirect dependencies via feature selection. We find that our method can accurately recover the relevant features and reconstruct the underlying interaction kernels if a critical number of samples is available. Finally, we explicitly use the tree structure of the data to validate if the estimated model is sufficient to explain correlated transition events of sister cells. Conclusions: Using synthetic cellular genealogies, we prove that our method is able to correctly identify features predictive of state transitions and we moreover validate the chosen model. Our approach allows to estimate the number of cellular genealogies required for the proposed spatiotemporal statistical analysis, and we thus provide an important tool for the experimental design of challenging single cell time-lapse microscopy assays.
引用
收藏
页数:17
相关论文
共 52 条
  • [1] Amat F, 2014, NAT METHODS, V11, P951, DOI [10.1038/nmeth.3036, 10.1038/NMETH.3036]
  • [2] COX REGRESSION-MODEL FOR COUNTING-PROCESSES - A LARGE SAMPLE STUDY
    ANDERSEN, PK
    GILL, RD
    [J]. ANNALS OF STATISTICS, 1982, 10 (04) : 1100 - 1120
  • [3] Appel B, 2001, BMC Dev Biol, V1, P13, DOI 10.1186/1471-213X-1-13
  • [4] Bach F. R., 2008, P 25 INT C MACH LEAR, P33, DOI DOI 10.1145/1390156.1390161
  • [5] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [6] An automatic method for robust and fast cell detection in bright field images from high-throughput microscopy
    Buggenthin, Felix
    Marr, Carsten
    Schwarzfischer, Michael
    Hoppe, Philipp S.
    Hilsenbeck, Oliver
    Schroeder, Timm
    Theis, Fabian J.
    [J]. BMC BIOINFORMATICS, 2013, 14
  • [7] Nanog safeguards pluripotency and mediates germline development
    Chambers, Ian
    Silva, Jose
    Colby, Douglas
    Nichols, Jennifer
    Nijmeijer, Bianca
    Robertson, Morag
    Vrana, Jan
    Jones, Ken
    Grotewold, Lars
    Smith, Austin
    [J]. NATURE, 2007, 450 (7173) : 1230 - U8
  • [8] Objective comparison of particle tracking methods
    Chenouard, Nicolas
    Smal, Ihor
    de Chaumont, Fabrice
    Maska, Martin
    Sbalzarini, Ivo F.
    Gong, Yuanhao
    Cardinale, Janick
    Carthel, Craig
    Coraluppi, Stefano
    Winter, Mark
    Cohen, Andrew R.
    Godinez, William J.
    Rohr, Karl
    Kalaidzidis, Yannis
    Liang, Liang
    Duncan, James
    Shen, Hongying
    Xu, Yingke
    Magnusson, Klas E. G.
    Jalden, Joakim
    Blau, Helen M.
    Paul-Gilloteaux, Perrine
    Roudot, Philippe
    Kervrann, Charles
    Waharte, Francois
    Tinevez, Jean-Yves
    Shorte, Spencer L.
    Willemse, Joost
    Celler, Katherine
    van Wezel, Gilles P.
    Dan, Han-Wei
    Tsai, Yuh-Show
    Ortiz de Solorzano, Carlos
    Olivo-Marin, Jean-Christophe
    Meijering, Erik
    [J]. NATURE METHODS, 2014, 11 (03) : 281 - U247
  • [9] Cohen AR, 2010, NAT METHODS, V7, P213, DOI [10.1038/NMETH.1424, 10.1038/nmeth.1424]
  • [10] Continuous live imaging of adult neural stem cell division and lineage progression in vitro
    Costa, Marcos R.
    Ortega, Felipe
    Brill, Monika S.
    Beckervordersandforth, Ruth
    Petrone, Ciro
    Schroeder, Timm
    Goetz, Magdalena
    Berninger, Benedikt
    [J]. DEVELOPMENT, 2011, 138 (06): : 1057 - 1068