Extracting human attributes using a convolutional neural network approach

被引:34
|
作者
Perlin, Hugo Alberto [1 ]
Lopes, Heitor Silverio [2 ]
机构
[1] Parana Fed Inst Parana, Paranagua, PR, Brazil
[2] Univ Tecnol Fed Parana, Curitiba, Parana, Brazil
关键词
Computer vision; Machine learning; Soft-biometrics; Convolutional Neural Network; Gender recognition; Clothes parsing; CLASSIFICATION; FEATURES; SCALE;
D O I
10.1016/j.patrec.2015.07.012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Extracting high level information from digital images and videos is a hard problem frequently faced by the computer vision and machine learning communities. Modern surveillance systems can monitor people, cars or objects by using computer vision methods. The objective of this work is to propose a method for identifying soft biometrics, in the form of clothing and gender, from images containing people, as a previous step for further identifying people themselves. We propose a solution to this classification problem using a Convolutional Neural Network, working as an all-in-one feature extractor and classifier. This method allows the development of a high-level end-to-end clothing/gender classifier. Experiments were done comparing the CNN with hand-designed classifiers. Also, two different operating modes of CNN are proposed and coin pared each other. The results obtained were very promising, showing that is possible to extract soft-biometrics attributes using an end-to-end CNN classifier. The proposed method achieved a good generalization capability, classifying the three different attributes with good accuracy. This suggests the possibility to search images using soft biometrics as search terms. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:250 / 259
页数:10
相关论文
共 50 条
  • [31] Extracting Building Footprints from Satellite Images using Convolutional Neural Networks
    Chawda, Chandan
    Aghav, Jagannath
    Udar, Swapnil
    2018 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2018, : 572 - 577
  • [32] Identification of Plant Species Using Convolutional Neural Network with Transfer Learning
    Arun, Anupama
    Sharma, Sanjeev
    Singh, Bhupendra
    Hazra, Tanmoy
    JOURNAL OF PHYTOPATHOLOGY, 2025, 173 (01)
  • [33] Visualising Static Features and Classifying Android Malware Using a Convolutional Neural Network Approach
    Kiraz, Omer
    Dogru, Ibrahim Alper
    APPLIED SCIENCES-BASEL, 2024, 14 (11):
  • [34] Validation of human activity recognition using a convolutional neural network on accelerometer and gyroscope data
    Hysenllari, Eni
    Ottenbacher, Joerg
    McLennan, Darren
    GERMAN JOURNAL OF EXERCISE AND SPORT RESEARCH, 2022, 52 (02) : 248 - 252
  • [35] Automatic human identification from panoramic dental radiographs using the convolutional neural network
    Fan, Fei
    Ke, Wenchi
    Wu, Wei
    Tian, Xuemei
    Lyu, Tu
    Liu, Yuanyuan
    Liao, Peixi
    Dai, Xinhua
    Chen, Hu
    Deng, Zhenhua
    FORENSIC SCIENCE INTERNATIONAL, 2020, 314
  • [36] A Convolutional Neural Network Approach to Improving Network Visibility
    Hartpence, Bruce
    Kwasinski, Andres
    2020 29TH WIRELESS AND OPTICAL COMMUNICATIONS CONFERENCE (WOCC), 2020, : 121 - 126
  • [37] Automatic Detection of Infantile Hemangioma using Convolutional Neural Network Approach
    Horvath, Balazs
    Neghina, Catalina
    Griparis, Andreea
    Sultana, Alina
    2020 INTERNATIONAL CONFERENCE ON E-HEALTH AND BIOENGINEERING (EHB), 2020,
  • [38] Deep learning on edge: Extracting field boundaries from satellite images with a convolutional neural network
    Waldner, Francois
    Diakogiannis, Foivos, I
    REMOTE SENSING OF ENVIRONMENT, 2020, 245 (245)
  • [39] A Convolutional Neural Network Approach for Dental Panoramic Radiographs Classification
    Kuo, Yu-Fang
    Lin, Szu-Yin
    Wu, Calvin H.
    Chen, Shih-Lun
    Lin, Ting-Lan
    Lin, Nung-Hsiang
    Mai, Chia-Hao
    Villaverde, Jocelyn F.
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2017, 7 (08) : 1693 - 1704
  • [40] A New Approach to Classify Drones Using a Deep Convolutional Neural Network
    Rakshit, Hrishi
    Zadeh, Pooneh Bagheri
    DRONES, 2024, 8 (07)