Modeling Multi-View Dependence in Bayesian Networks for Alzheimer's Disease Detection

被引:1
作者
Pillai, Parvathy Sudhir [1 ]
Leong, Tze-Yun [1 ]
机构
[1] Natl Univ Singapore, Sch Comp, Singapore, Singapore
来源
MEDINFO 2019: HEALTH AND WELLBEING E-NETWORKS FOR ALL | 2019年 / 264卷
关键词
Alzheimer Disease; Bayesian networks; Classification;
D O I
10.3233/SHTI190243
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Early detection of Alzheimer's disease is important for deploying interventions to prevent or slow disease progression. We propose a multi-view dependence modeling framework that integrates multiple data sources to distinguish patients at different stages of the disease. We design interpretable models that can handle heterogeneous data types including neuro-images, bio- and clinical markers, and historical and genotypical characteristics of the subjects. We learn the dependence structure from data with guidance from domain knowledge in Bayesian Networks, visualizing and quantifying the conditional probabilistic dependence among the variables. Our results indicate that the hybrid dependence models also improve prediction performance.
引用
收藏
页码:358 / 362
页数:5
相关论文
共 15 条
[1]   Stan: A Probabilistic Programming Language [J].
Carpenter, Bob ;
Gelman, Andrew ;
Hoffman, Matthew D. ;
Lee, Daniel ;
Goodrich, Ben ;
Betancourt, Michael ;
Brubaker, Marcus A. ;
Guo, Jiqiang ;
Li, Peter ;
Riddell, Allen .
JOURNAL OF STATISTICAL SOFTWARE, 2017, 76 (01) :1-29
[2]  
Hambleton RK., 1991, FUNDAMENTALS ITEM RE
[3]   Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers [J].
Jack, Clifford R., Jr. ;
Knopman, David S. ;
Jagust, William J. ;
Petersen, Ronald C. ;
Weiner, Michael W. ;
Aisen, Paul S. ;
Shaw, Leslie M. ;
Vemuri, Prashanthi ;
Wiste, Heather J. ;
Weigand, Stephen D. ;
Lesnick, Timothy G. ;
Pankratz, Vernon S. ;
Donohue, Michael C. ;
Trojanowski, John Q. .
LANCET NEUROLOGY, 2013, 12 (02) :207-216
[4]   Heterogeneous multimodal biomarkers analysis for Alzheimer's disease via Bayesian network [J].
Jin, Yan ;
Su, Yi ;
Zhou, Xiao-Hua ;
Huang, Shuai .
EURASIP JOURNAL ON BIOINFORMATICS AND SYSTEMS BIOLOGY, 2016, 2016 (01)
[5]  
Li GC, 2007, PROCEEDINGS OF THE 2007 INTERNATIONAL CONFERENCE ON AGRICULTURE ENGINEERING, P560
[6]   The Alzheimer's disease neuroimaging initiative [J].
Mueller, SG ;
Weiner, MW ;
Thal, LJ ;
Petersen, RC ;
Jack, C ;
Jagust, W ;
Trojanowski, JQ ;
Toga, AW ;
Beckett, L .
NEUROIMAGING CLINICS OF NORTH AMERICA, 2005, 15 (04) :869-+
[7]  
Nakajima S, 2011, J MACH LEARN RES, V12, P2583
[8]  
Pradhan M., 1994, Uncertainty in Artificial Intelligence. Proceedings of the Tenth Conference (1994), P484
[9]  
Scott J.G., 2009, ARTIF INTELL, P73
[10]   Learning Bayesian Networks with the bnlearn R Package [J].
Scutari, Marco .
JOURNAL OF STATISTICAL SOFTWARE, 2010, 35 (03) :1-22