APPLICATION OF SUPPORT VECTOR MACHINES IN MEDICAL DATA

被引:0
|
作者
Weng, Yongqiang [1 ]
Wu, Chunshan [2 ]
Jiang, Qiaowei [2 ]
Guo, Wenming [2 ]
Wang, Cong [2 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Automat, Trusted Distributed Comp & Serv Lab, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Software Engn, Trusted Distributed Comp & Serv Lab, Beijing 100876, Peoples R China
来源
PROCEEDINGS OF 2016 4TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (IEEE CCIS 2016) | 2016年
关键词
support vector machine; incremental learning; fuzzy c-mean; generalized KKT conditions;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Compared with ordinary data, medical data has its own characteristics. Such as mode of polymorphism, incomplete and longer timeliness. These characteristics brought a lot of difficulties on medical data of collection and processing, so the incremental learning method in the application of medical data is particularly critical. In this paper, Based on the support vector machines (SVM) proposed an incremental learning method that combined with fuzzy c-average and generalized KKT conditions. Through the filter of historical sample set and new sample that is invalid to reduce the training sample. So as to achieve rapid, incremental learning. Finally, the improved algorithm applied to the two standard medical database from UCI, which verify the improved algorithm advantage.
引用
收藏
页码:200 / 204
页数:5
相关论文
共 50 条
  • [21] Applications of support vector machines to cancer classification with microarray data
    Chu, F
    Wang, LP
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2005, 15 (06) : 475 - 484
  • [22] Support Vector Machines with Weighted Powered Kernels for Data Classification
    Afif, Mohammed H.
    Hedar, Abdel-Rahman
    Hamid, Taysir H. Abdel
    Mahdy, Yousef B.
    ADVANCED MACHINE LEARNING TECHNOLOGIES AND APPLICATIONS, 2012, 322 : 369 - 378
  • [23] Gene expression data analysis using support vector machines
    Chu, F
    Wang, LP
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS 2003, VOLS 1-4, 2003, : 2268 - 2271
  • [24] Derivation, Optimization, and Comparative Analysis of Support Vector Machines Application to Multi-Class Image Data
    Shekhar, Avi
    Saeed, Amir K.
    Johnson, Benjamin A.
    Rodriguez, Benjamin M.
    MULTIMODAL IMAGE EXPLOITATION AND LEARNING 2024, 2024, 13033
  • [25] Field Support Vector Machines
    Huang, Kaizhu
    Jiang, Haochuan
    Zhang, Xu-Yao
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2017, 1 (06): : 454 - 463
  • [26] Semismooth support vector machines
    Michael C. Ferris
    Todd S. Munson
    Mathematical Programming, 2004, 101 : 185 - 204
  • [27] Distributed support vector machines
    Navia-Vazquez, A.
    Gutierrez-Gonzalez, D.
    Parrado-Hernandez, E.
    Navarro-Abellan, J. J.
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2006, 17 (04): : 1091 - 1097
  • [28] Error bounds for support vector machines with application to the identification of active constraints
    De Leone, R.
    Lazzari, C.
    OPTIMIZATION METHODS & SOFTWARE, 2010, 25 (02) : 185 - 202
  • [29] Application of Support Vector Machines to Recognize Speech Patterns of Numeric Digits
    Batista, Gracieth Cavalcanti
    Santos Silva, Washington Luis
    2015 11TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2015, : 831 - 836
  • [30] Imbalanced data classification via support vector machines and genetic algorithms
    Cervantes, Jair
    Li, Xiaoou
    Yu, Wen
    CONNECTION SCIENCE, 2014, 26 (04) : 335 - 348