COMPUTING GROBNER BASES AND INVARIANTS OF THE SYMMETRIC ALGEBRA

被引:0
作者
La Barbiera, M. [1 ]
Restuccia, G. [1 ]
机构
[1] Univ Messina, Dept Math, Viale Ferdinando Stagno dAlcontres 31, I-98166 Messina, Italy
关键词
Grobner bases; symmetric algebra; dimension; depth; MONOMIAL IDEALS; S-SEQUENCES;
D O I
10.18514/MMN.2016.1323
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study algebraic invariants of the symmetric algebra Sym(R)(L) of the square-free monomial ideal L = In-1 + J(n-1) in the polynomial ring R = K[X-1, ..., X-n; Y-1, ..., Y-n] where In-1 (resp. J(n-1)) is generated by all square-free monomials of degree n-1 in the variables X-1, ..., X-n (resp. Y-1, ..., Y-n). In particular, the dimension and the depth of Sym(R)(L) are investigated by techniques of Grobner bases and theory of s-sequences.
引用
收藏
页码:777 / 789
页数:13
相关论文
共 8 条